{"title":"可持续吸油混凝土边坡挡墙的有限元结构分析与优化","authors":"Tong Li, Zeyu Yang, Xiaochen Liu, Bingqiang Dong, Donghui Wu, Dongli Wang","doi":"10.3390/su16187923","DOIUrl":null,"url":null,"abstract":"Addressing the issue of oil pollutants and their impact on environmental sustainability, this study prepared sustainable oil-absorbent concrete through particle size adjustment and chemical modification methods. The effects of alkaline activators and seashell powder on the strength and oil absorption performance of the sustainable oil-absorbent concrete were investigated. Based on this, retaining wall blocks with different structural forms were designed for use as oil-absorbing functional concrete materials. Retaining walls with different structural forms and arrangements were calculated by ABAQUS, and their stress and displacement were compared to select the best structural form and arrangement. The research findings indicate that NaOH adversely affected the oil absorption capacity of sustainable oil-absorbent concrete, resulting in a decrease in oil absorption from 207.70 kg/m3 to 104.56 kg/m3; however, it enhanced the compressive strength of the concrete, increasing the 28-day compressive strength by 5.02%. The incorporation of seashell powder exerted a detrimental effect on both the compressive strength and oil absorption performance of the sustainable oil-absorbent concrete. The finite element analysis results show that L-shaped retaining wall bricks with vegetation cavity had better anti-deformation ability, and under the inverted arrangement, the maximum deformation of the retaining wall was 1.148 mm, which was the smallest of all working conditions. This study provides an effective reference for the design of sustainable oil-absorbing concrete retaining walls with oil adsorption capacity.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finite Element Structural Analysis and Optimization of Sustainable Oil-Absorbing Concrete Slope Retaining Wall\",\"authors\":\"Tong Li, Zeyu Yang, Xiaochen Liu, Bingqiang Dong, Donghui Wu, Dongli Wang\",\"doi\":\"10.3390/su16187923\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Addressing the issue of oil pollutants and their impact on environmental sustainability, this study prepared sustainable oil-absorbent concrete through particle size adjustment and chemical modification methods. The effects of alkaline activators and seashell powder on the strength and oil absorption performance of the sustainable oil-absorbent concrete were investigated. Based on this, retaining wall blocks with different structural forms were designed for use as oil-absorbing functional concrete materials. Retaining walls with different structural forms and arrangements were calculated by ABAQUS, and their stress and displacement were compared to select the best structural form and arrangement. The research findings indicate that NaOH adversely affected the oil absorption capacity of sustainable oil-absorbent concrete, resulting in a decrease in oil absorption from 207.70 kg/m3 to 104.56 kg/m3; however, it enhanced the compressive strength of the concrete, increasing the 28-day compressive strength by 5.02%. The incorporation of seashell powder exerted a detrimental effect on both the compressive strength and oil absorption performance of the sustainable oil-absorbent concrete. The finite element analysis results show that L-shaped retaining wall bricks with vegetation cavity had better anti-deformation ability, and under the inverted arrangement, the maximum deformation of the retaining wall was 1.148 mm, which was the smallest of all working conditions. This study provides an effective reference for the design of sustainable oil-absorbing concrete retaining walls with oil adsorption capacity.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.3390/su16187923\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3390/su16187923","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Finite Element Structural Analysis and Optimization of Sustainable Oil-Absorbing Concrete Slope Retaining Wall
Addressing the issue of oil pollutants and their impact on environmental sustainability, this study prepared sustainable oil-absorbent concrete through particle size adjustment and chemical modification methods. The effects of alkaline activators and seashell powder on the strength and oil absorption performance of the sustainable oil-absorbent concrete were investigated. Based on this, retaining wall blocks with different structural forms were designed for use as oil-absorbing functional concrete materials. Retaining walls with different structural forms and arrangements were calculated by ABAQUS, and their stress and displacement were compared to select the best structural form and arrangement. The research findings indicate that NaOH adversely affected the oil absorption capacity of sustainable oil-absorbent concrete, resulting in a decrease in oil absorption from 207.70 kg/m3 to 104.56 kg/m3; however, it enhanced the compressive strength of the concrete, increasing the 28-day compressive strength by 5.02%. The incorporation of seashell powder exerted a detrimental effect on both the compressive strength and oil absorption performance of the sustainable oil-absorbent concrete. The finite element analysis results show that L-shaped retaining wall bricks with vegetation cavity had better anti-deformation ability, and under the inverted arrangement, the maximum deformation of the retaining wall was 1.148 mm, which was the smallest of all working conditions. This study provides an effective reference for the design of sustainable oil-absorbing concrete retaining walls with oil adsorption capacity.