可持续吸油混凝土边坡挡墙的有限元结构分析与优化

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-09-11 DOI:10.3390/su16187923
Tong Li, Zeyu Yang, Xiaochen Liu, Bingqiang Dong, Donghui Wu, Dongli Wang
{"title":"可持续吸油混凝土边坡挡墙的有限元结构分析与优化","authors":"Tong Li, Zeyu Yang, Xiaochen Liu, Bingqiang Dong, Donghui Wu, Dongli Wang","doi":"10.3390/su16187923","DOIUrl":null,"url":null,"abstract":"Addressing the issue of oil pollutants and their impact on environmental sustainability, this study prepared sustainable oil-absorbent concrete through particle size adjustment and chemical modification methods. The effects of alkaline activators and seashell powder on the strength and oil absorption performance of the sustainable oil-absorbent concrete were investigated. Based on this, retaining wall blocks with different structural forms were designed for use as oil-absorbing functional concrete materials. Retaining walls with different structural forms and arrangements were calculated by ABAQUS, and their stress and displacement were compared to select the best structural form and arrangement. The research findings indicate that NaOH adversely affected the oil absorption capacity of sustainable oil-absorbent concrete, resulting in a decrease in oil absorption from 207.70 kg/m3 to 104.56 kg/m3; however, it enhanced the compressive strength of the concrete, increasing the 28-day compressive strength by 5.02%. The incorporation of seashell powder exerted a detrimental effect on both the compressive strength and oil absorption performance of the sustainable oil-absorbent concrete. The finite element analysis results show that L-shaped retaining wall bricks with vegetation cavity had better anti-deformation ability, and under the inverted arrangement, the maximum deformation of the retaining wall was 1.148 mm, which was the smallest of all working conditions. This study provides an effective reference for the design of sustainable oil-absorbing concrete retaining walls with oil adsorption capacity.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finite Element Structural Analysis and Optimization of Sustainable Oil-Absorbing Concrete Slope Retaining Wall\",\"authors\":\"Tong Li, Zeyu Yang, Xiaochen Liu, Bingqiang Dong, Donghui Wu, Dongli Wang\",\"doi\":\"10.3390/su16187923\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Addressing the issue of oil pollutants and their impact on environmental sustainability, this study prepared sustainable oil-absorbent concrete through particle size adjustment and chemical modification methods. The effects of alkaline activators and seashell powder on the strength and oil absorption performance of the sustainable oil-absorbent concrete were investigated. Based on this, retaining wall blocks with different structural forms were designed for use as oil-absorbing functional concrete materials. Retaining walls with different structural forms and arrangements were calculated by ABAQUS, and their stress and displacement were compared to select the best structural form and arrangement. The research findings indicate that NaOH adversely affected the oil absorption capacity of sustainable oil-absorbent concrete, resulting in a decrease in oil absorption from 207.70 kg/m3 to 104.56 kg/m3; however, it enhanced the compressive strength of the concrete, increasing the 28-day compressive strength by 5.02%. The incorporation of seashell powder exerted a detrimental effect on both the compressive strength and oil absorption performance of the sustainable oil-absorbent concrete. The finite element analysis results show that L-shaped retaining wall bricks with vegetation cavity had better anti-deformation ability, and under the inverted arrangement, the maximum deformation of the retaining wall was 1.148 mm, which was the smallest of all working conditions. This study provides an effective reference for the design of sustainable oil-absorbing concrete retaining walls with oil adsorption capacity.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.3390/su16187923\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3390/su16187923","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

针对石油污染物及其对环境可持续性的影响问题,本研究通过粒度调整和化学改性方法制备了可持续吸油混凝土。研究了碱性活化剂和贝壳粉对可持续吸油混凝土强度和吸油性能的影响。在此基础上,设计了不同结构形式的挡土墙砌块,作为吸油功能混凝土材料使用。采用 ABAQUS 计算了不同结构形式和布置的挡土墙,并对其应力和位移进行了比较,以选出最佳的结构形式和布置。研究结果表明,NaOH 对可持续吸油混凝土的吸油能力有不利影响,导致吸油量从 207.70 kg/m3 降至 104.56 kg/m3;但它提高了混凝土的抗压强度,28 天抗压强度提高了 5.02%。贝壳粉的掺入对可持续吸油混凝土的抗压强度和吸油性能都产生了不利影响。有限元分析结果表明,带有植被空腔的 L 型挡土墙砖具有更好的抗变形能力,在倒置布置下,挡土墙的最大变形量为 1.148 毫米,是所有工况中最小的。该研究为设计具有吸油能力的可持续吸油混凝土挡土墙提供了有效参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Finite Element Structural Analysis and Optimization of Sustainable Oil-Absorbing Concrete Slope Retaining Wall
Addressing the issue of oil pollutants and their impact on environmental sustainability, this study prepared sustainable oil-absorbent concrete through particle size adjustment and chemical modification methods. The effects of alkaline activators and seashell powder on the strength and oil absorption performance of the sustainable oil-absorbent concrete were investigated. Based on this, retaining wall blocks with different structural forms were designed for use as oil-absorbing functional concrete materials. Retaining walls with different structural forms and arrangements were calculated by ABAQUS, and their stress and displacement were compared to select the best structural form and arrangement. The research findings indicate that NaOH adversely affected the oil absorption capacity of sustainable oil-absorbent concrete, resulting in a decrease in oil absorption from 207.70 kg/m3 to 104.56 kg/m3; however, it enhanced the compressive strength of the concrete, increasing the 28-day compressive strength by 5.02%. The incorporation of seashell powder exerted a detrimental effect on both the compressive strength and oil absorption performance of the sustainable oil-absorbent concrete. The finite element analysis results show that L-shaped retaining wall bricks with vegetation cavity had better anti-deformation ability, and under the inverted arrangement, the maximum deformation of the retaining wall was 1.148 mm, which was the smallest of all working conditions. This study provides an effective reference for the design of sustainable oil-absorbing concrete retaining walls with oil adsorption capacity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Vitamin B12: prevention of human beings from lethal diseases and its food application. Current status and obstacles of narrowing yield gaps of four major crops. Cold shock treatment alleviates pitting in sweet cherry fruit by enhancing antioxidant enzymes activity and regulating membrane lipid metabolism. Removal of proteins and lipids affects structure, in vitro digestion and physicochemical properties of rice flour modified by heat-moisture treatment. Investigating the impact of climate variables on the organic honey yield in Turkey using XGBoost machine learning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1