{"title":"利用 M2-SCREAM 再分析数据对北极平流层涡旋内部臭氧活性成分变化的轨迹分析","authors":"A. N. Lukyanov, V. A. Yushkov, A. S. Vyazankin","doi":"10.1134/S1024856024700490","DOIUrl":null,"url":null,"abstract":"<p>Thermodynamic and chemical processes inside the stratospheric polar vortex which decrease the ozone content in this region are studied. The winter-spring seasons in the Arctic, with the strongest stratospheric vortices and, hence, maximal ozone loss, are considered. The vortex-averaged variations in ozone and ozone-active components are studied on the basis of an ensemble of backward trajectories inside the vortex and M2-SCREAM stratospheric reanalysis data, which includes some chemical components that affect the ozone concentration. The record ozone depletion in winter 2020 was shown to be due to not only the long-lived stable stratospheric polar vortex, but also the earlier transformation of chlorine reservoirs into the active form and stronger denitrification and dehydration of air masses. The approach suggested can be used to analyze dynamic and chemical processes in the polar stratosphere over past winters and to validate chemical-climate models.</p>","PeriodicalId":46751,"journal":{"name":"Atmospheric and Oceanic Optics","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Trajectory Analysis of Variations in Ozone-Active Components inside the Stratospheric Arctic Vortex Using M2-SCREAM Reanalysis Data\",\"authors\":\"A. N. Lukyanov, V. A. Yushkov, A. S. Vyazankin\",\"doi\":\"10.1134/S1024856024700490\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Thermodynamic and chemical processes inside the stratospheric polar vortex which decrease the ozone content in this region are studied. The winter-spring seasons in the Arctic, with the strongest stratospheric vortices and, hence, maximal ozone loss, are considered. The vortex-averaged variations in ozone and ozone-active components are studied on the basis of an ensemble of backward trajectories inside the vortex and M2-SCREAM stratospheric reanalysis data, which includes some chemical components that affect the ozone concentration. The record ozone depletion in winter 2020 was shown to be due to not only the long-lived stable stratospheric polar vortex, but also the earlier transformation of chlorine reservoirs into the active form and stronger denitrification and dehydration of air masses. The approach suggested can be used to analyze dynamic and chemical processes in the polar stratosphere over past winters and to validate chemical-climate models.</p>\",\"PeriodicalId\":46751,\"journal\":{\"name\":\"Atmospheric and Oceanic Optics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmospheric and Oceanic Optics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1024856024700490\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric and Oceanic Optics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S1024856024700490","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
Trajectory Analysis of Variations in Ozone-Active Components inside the Stratospheric Arctic Vortex Using M2-SCREAM Reanalysis Data
Thermodynamic and chemical processes inside the stratospheric polar vortex which decrease the ozone content in this region are studied. The winter-spring seasons in the Arctic, with the strongest stratospheric vortices and, hence, maximal ozone loss, are considered. The vortex-averaged variations in ozone and ozone-active components are studied on the basis of an ensemble of backward trajectories inside the vortex and M2-SCREAM stratospheric reanalysis data, which includes some chemical components that affect the ozone concentration. The record ozone depletion in winter 2020 was shown to be due to not only the long-lived stable stratospheric polar vortex, but also the earlier transformation of chlorine reservoirs into the active form and stronger denitrification and dehydration of air masses. The approach suggested can be used to analyze dynamic and chemical processes in the polar stratosphere over past winters and to validate chemical-climate models.
期刊介绍:
Atmospheric and Oceanic Optics is an international peer reviewed journal that presents experimental and theoretical articles relevant to a wide range of problems of atmospheric and oceanic optics, ecology, and climate. The journal coverage includes: scattering and transfer of optical waves, spectroscopy of atmospheric gases, turbulent and nonlinear optical phenomena, adaptive optics, remote (ground-based, airborne, and spaceborne) sensing of the atmosphere and the surface, methods for solving of inverse problems, new equipment for optical investigations, development of computer programs and databases for optical studies. Thematic issues are devoted to the studies of atmospheric ozone, adaptive, nonlinear, and coherent optics, regional climate and environmental monitoring, and other subjects.