复杂应力路径下含气煤岩的变形、渗流和能量特征

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-09-13 DOI:10.3390/su16188001
Dongming Zhang, Xingfeng Mao, Zhenglin Guo, Jiabo Geng
{"title":"复杂应力路径下含气煤岩的变形、渗流和能量特征","authors":"Dongming Zhang, Xingfeng Mao, Zhenglin Guo, Jiabo Geng","doi":"10.3390/su16188001","DOIUrl":null,"url":null,"abstract":"The exploitation and utilization of coal resources are closely related to sustainable social and economic development. To uncover the deformation and seepage patterns of coal on the mining process, this study devised a new stress program with simultaneous changes in axial and confining pressures, then performed coal seepage experiments at various gas pressures. The results show that the residual deformation exhibited a stepwise change, the relative residual deformation at the same level decreased gradually, and the increase in gas pressure led to a reduction in residual deformation. In each stress grade, the absolute permeability damage rate increased gradually, while the relative permeability damage rate decreased with the number of cycles, and the growth of gas pressure could decrease the permeability damage rate. The higher gas pressure led to a lower average energy dissipation ratio at each stress level and increased the rate of growth of elastic energy before destruction of the specimens. A higher gas pressure led to a quicker rate of change in damage variables at high stress levels. The findings have implications for the effective mining and sustainable development of coal resources.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deformation, Seepage, and Energy Characteristics of Gas-Containing Coal Rocks under Complex Stress Paths\",\"authors\":\"Dongming Zhang, Xingfeng Mao, Zhenglin Guo, Jiabo Geng\",\"doi\":\"10.3390/su16188001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The exploitation and utilization of coal resources are closely related to sustainable social and economic development. To uncover the deformation and seepage patterns of coal on the mining process, this study devised a new stress program with simultaneous changes in axial and confining pressures, then performed coal seepage experiments at various gas pressures. The results show that the residual deformation exhibited a stepwise change, the relative residual deformation at the same level decreased gradually, and the increase in gas pressure led to a reduction in residual deformation. In each stress grade, the absolute permeability damage rate increased gradually, while the relative permeability damage rate decreased with the number of cycles, and the growth of gas pressure could decrease the permeability damage rate. The higher gas pressure led to a lower average energy dissipation ratio at each stress level and increased the rate of growth of elastic energy before destruction of the specimens. A higher gas pressure led to a quicker rate of change in damage variables at high stress levels. The findings have implications for the effective mining and sustainable development of coal resources.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.3390/su16188001\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3390/su16188001","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

煤炭资源的开发利用与社会经济的可持续发展密切相关。为揭示煤炭在开采过程中的变形和渗流规律,本研究设计了轴向压力和圈闭压力同步变化的新应力程序,并在不同瓦斯压力下进行了煤炭渗流实验。结果表明,残余变形呈阶梯状变化,同一水平的相对残余变形逐渐减小,瓦斯压力的增加导致残余变形减小。在各应力等级中,绝对渗透破坏率逐渐增加,而相对渗透破坏率随着循环次数的增加而降低,气体压力的增加可降低渗透破坏率。气体压力越高,各应力等级的平均耗能率越低,试样破坏前的弹性能量增长速度越快。气体压力越高,高应力水平下的破坏变量变化率越快。研究结果对有效开采和可持续开发煤炭资源具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deformation, Seepage, and Energy Characteristics of Gas-Containing Coal Rocks under Complex Stress Paths
The exploitation and utilization of coal resources are closely related to sustainable social and economic development. To uncover the deformation and seepage patterns of coal on the mining process, this study devised a new stress program with simultaneous changes in axial and confining pressures, then performed coal seepage experiments at various gas pressures. The results show that the residual deformation exhibited a stepwise change, the relative residual deformation at the same level decreased gradually, and the increase in gas pressure led to a reduction in residual deformation. In each stress grade, the absolute permeability damage rate increased gradually, while the relative permeability damage rate decreased with the number of cycles, and the growth of gas pressure could decrease the permeability damage rate. The higher gas pressure led to a lower average energy dissipation ratio at each stress level and increased the rate of growth of elastic energy before destruction of the specimens. A higher gas pressure led to a quicker rate of change in damage variables at high stress levels. The findings have implications for the effective mining and sustainable development of coal resources.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Vitamin B12: prevention of human beings from lethal diseases and its food application. Current status and obstacles of narrowing yield gaps of four major crops. Cold shock treatment alleviates pitting in sweet cherry fruit by enhancing antioxidant enzymes activity and regulating membrane lipid metabolism. Removal of proteins and lipids affects structure, in vitro digestion and physicochemical properties of rice flour modified by heat-moisture treatment. Investigating the impact of climate variables on the organic honey yield in Turkey using XGBoost machine learning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1