Wave-LSTM:体细胞全基因组拷贝数图谱的多尺度分析

Charles Gadd, Christopher Yau
{"title":"Wave-LSTM:体细胞全基因组拷贝数图谱的多尺度分析","authors":"Charles Gadd, Christopher Yau","doi":"arxiv-2408.12636","DOIUrl":null,"url":null,"abstract":"Changes in the number of copies of certain parts of the genome, known as copy\nnumber alterations (CNAs), due to somatic mutation processes are a hallmark of\nmany cancers. This genomic complexity is known to be associated with poorer\noutcomes for patients but describing its contribution in detail has been\ndifficult. Copy number alterations can affect large regions spanning whole\nchromosomes or the entire genome itself but can also be localised to only small\nsegments of the genome and no methods exist that allow this multi-scale nature\nto be quantified. In this paper, we address this using Wave-LSTM, a signal\ndecomposition approach designed to capture the multi-scale structure of complex\nwhole genome copy number profiles. Using wavelet-based source separation in\ncombination with deep learning-based attention mechanisms. We show that\nWave-LSTM can be used to derive multi-scale representations from copy number\nprofiles which can be used to decipher sub-clonal structures from single-cell\ncopy number data and to improve survival prediction performance from patient\ntumour profiles.","PeriodicalId":501070,"journal":{"name":"arXiv - QuanBio - Genomics","volume":"86 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wave-LSTM: Multi-scale analysis of somatic whole genome copy number profiles\",\"authors\":\"Charles Gadd, Christopher Yau\",\"doi\":\"arxiv-2408.12636\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Changes in the number of copies of certain parts of the genome, known as copy\\nnumber alterations (CNAs), due to somatic mutation processes are a hallmark of\\nmany cancers. This genomic complexity is known to be associated with poorer\\noutcomes for patients but describing its contribution in detail has been\\ndifficult. Copy number alterations can affect large regions spanning whole\\nchromosomes or the entire genome itself but can also be localised to only small\\nsegments of the genome and no methods exist that allow this multi-scale nature\\nto be quantified. In this paper, we address this using Wave-LSTM, a signal\\ndecomposition approach designed to capture the multi-scale structure of complex\\nwhole genome copy number profiles. Using wavelet-based source separation in\\ncombination with deep learning-based attention mechanisms. We show that\\nWave-LSTM can be used to derive multi-scale representations from copy number\\nprofiles which can be used to decipher sub-clonal structures from single-cell\\ncopy number data and to improve survival prediction performance from patient\\ntumour profiles.\",\"PeriodicalId\":501070,\"journal\":{\"name\":\"arXiv - QuanBio - Genomics\",\"volume\":\"86 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuanBio - Genomics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.12636\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Genomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.12636","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

体细胞突变过程导致基因组某些部分的拷贝数发生变化,即所谓的拷贝数改变(CNA),是许多癌症的标志。众所周知,这种基因组复杂性与患者较差的预后有关,但要详细描述它的作用却很困难。拷贝数改变可以影响横跨整个染色体或整个基因组本身的大区域,但也可能只局限于基因组的小片段,而目前还没有任何方法可以量化这种多尺度性质。在本文中,我们使用 Wave-LSTM 解决了这一问题,这是一种信号分解方法,旨在捕捉复杂的全基因组拷贝数图谱的多尺度结构。我们将基于小波的源分离与基于深度学习的注意机制相结合。我们的研究表明,Wave-LSTM 可用于从拷贝数图谱中推导出多尺度表征,从而从单细胞拷贝数数据中解密亚克隆结构,并提高患者肿瘤图谱的生存预测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Wave-LSTM: Multi-scale analysis of somatic whole genome copy number profiles
Changes in the number of copies of certain parts of the genome, known as copy number alterations (CNAs), due to somatic mutation processes are a hallmark of many cancers. This genomic complexity is known to be associated with poorer outcomes for patients but describing its contribution in detail has been difficult. Copy number alterations can affect large regions spanning whole chromosomes or the entire genome itself but can also be localised to only small segments of the genome and no methods exist that allow this multi-scale nature to be quantified. In this paper, we address this using Wave-LSTM, a signal decomposition approach designed to capture the multi-scale structure of complex whole genome copy number profiles. Using wavelet-based source separation in combination with deep learning-based attention mechanisms. We show that Wave-LSTM can be used to derive multi-scale representations from copy number profiles which can be used to decipher sub-clonal structures from single-cell copy number data and to improve survival prediction performance from patient tumour profiles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Allium Vegetables Intake and Digestive System Cancer Risk: A Study Based on Mendelian Randomization, Network Pharmacology and Molecular Docking wgatools: an ultrafast toolkit for manipulating whole genome alignments Selecting Differential Splicing Methods: Practical Considerations Advancements in colored k-mer sets: essentials for the curious Advancements in practical k-mer sets: essentials for the curious
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1