在单细胞 RNA 测序数据分析中增强特征选择的量子退火法

Selim Romero, Shreyan Gupta, Victoria Gatlin, Robert S. Chapkin, James J. Cai
{"title":"在单细胞 RNA 测序数据分析中增强特征选择的量子退火法","authors":"Selim Romero, Shreyan Gupta, Victoria Gatlin, Robert S. Chapkin, James J. Cai","doi":"arxiv-2408.08867","DOIUrl":null,"url":null,"abstract":"Feature selection is vital for identifying relevant variables in\nclassification and regression models, especially in single-cell RNA sequencing\n(scRNA-seq) data analysis. Traditional methods like LASSO often struggle with\nthe nonlinearities and multicollinearities in scRNA-seq data due to complex\ngene expression and extensive gene interactions. Quantum annealing, a form of\nquantum computing, offers a promising solution. In this study, we apply quantum\nannealing-empowered quadratic unconstrained binary optimization (QUBO) for\nfeature selection in scRNA-seq data. Using data from a human cell\ndifferentiation system, we show that QUBO identifies genes with nonlinear\nexpression patterns related to differentiation time, many of which play roles\nin the differentiation process. In contrast, LASSO tends to select genes with\nmore linear expression changes. Our findings suggest that the QUBO method,\npowered by quantum annealing, can reveal complex gene expression patterns that\ntraditional methods might overlook, enhancing scRNA-seq data analysis and\ninterpretation.","PeriodicalId":501070,"journal":{"name":"arXiv - QuanBio - Genomics","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum Annealing for Enhanced Feature Selection in Single-Cell RNA Sequencing Data Analysis\",\"authors\":\"Selim Romero, Shreyan Gupta, Victoria Gatlin, Robert S. Chapkin, James J. Cai\",\"doi\":\"arxiv-2408.08867\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Feature selection is vital for identifying relevant variables in\\nclassification and regression models, especially in single-cell RNA sequencing\\n(scRNA-seq) data analysis. Traditional methods like LASSO often struggle with\\nthe nonlinearities and multicollinearities in scRNA-seq data due to complex\\ngene expression and extensive gene interactions. Quantum annealing, a form of\\nquantum computing, offers a promising solution. In this study, we apply quantum\\nannealing-empowered quadratic unconstrained binary optimization (QUBO) for\\nfeature selection in scRNA-seq data. Using data from a human cell\\ndifferentiation system, we show that QUBO identifies genes with nonlinear\\nexpression patterns related to differentiation time, many of which play roles\\nin the differentiation process. In contrast, LASSO tends to select genes with\\nmore linear expression changes. Our findings suggest that the QUBO method,\\npowered by quantum annealing, can reveal complex gene expression patterns that\\ntraditional methods might overlook, enhancing scRNA-seq data analysis and\\ninterpretation.\",\"PeriodicalId\":501070,\"journal\":{\"name\":\"arXiv - QuanBio - Genomics\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuanBio - Genomics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.08867\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Genomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.08867","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

特征选择对于识别分类和回归模型中的相关变量至关重要,尤其是在单细胞 RNA 测序(scRNA-seq)数据分析中。由于复杂的基因表达和广泛的基因相互作用,scRNA-seq 数据中的非线性和多共线性问题常常令 LASSO 等传统方法束手无策。量子退火作为量子计算的一种形式,提供了一种很有前景的解决方案。在这项研究中,我们将量子退火赋能的二次无约束二元优化(QUBO)应用于 scRNA-seq 数据的特征选择。通过使用人类细胞分化系统的数据,我们发现 QUBO 能识别与分化时间相关的非线性表达模式的基因,其中许多基因在分化过程中发挥作用。相比之下,LASSO 则倾向于选择表达变化更具线性的基因。我们的研究结果表明,量子退火的 QUBO 方法可以揭示传统方法可能忽略的复杂基因表达模式,从而提高 scRNA-seq 数据分析和解释能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Quantum Annealing for Enhanced Feature Selection in Single-Cell RNA Sequencing Data Analysis
Feature selection is vital for identifying relevant variables in classification and regression models, especially in single-cell RNA sequencing (scRNA-seq) data analysis. Traditional methods like LASSO often struggle with the nonlinearities and multicollinearities in scRNA-seq data due to complex gene expression and extensive gene interactions. Quantum annealing, a form of quantum computing, offers a promising solution. In this study, we apply quantum annealing-empowered quadratic unconstrained binary optimization (QUBO) for feature selection in scRNA-seq data. Using data from a human cell differentiation system, we show that QUBO identifies genes with nonlinear expression patterns related to differentiation time, many of which play roles in the differentiation process. In contrast, LASSO tends to select genes with more linear expression changes. Our findings suggest that the QUBO method, powered by quantum annealing, can reveal complex gene expression patterns that traditional methods might overlook, enhancing scRNA-seq data analysis and interpretation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Allium Vegetables Intake and Digestive System Cancer Risk: A Study Based on Mendelian Randomization, Network Pharmacology and Molecular Docking wgatools: an ultrafast toolkit for manipulating whole genome alignments Selecting Differential Splicing Methods: Practical Considerations Advancements in colored k-mer sets: essentials for the curious Advancements in practical k-mer sets: essentials for the curious
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1