{"title":"基于自适应贝特曼多项式的 DVR 设计与控制以改善电能质量","authors":"Kanchan Bala Rai, Narendra Kumar, Alka Singh","doi":"10.1002/cta.4270","DOIUrl":null,"url":null,"abstract":"Power quality issues encompass a spectrum of disturbances that affect the stability and reliability of the power supply. This study explores voltage‐related anomalies, including sags, surges, flickers, unbalances, harmonics, interruptions, and swells, examining their origins, characteristics, and repercussions. These issues arise from a myriad of sources, such as load fluctuations, equipment malfunctions, and grid dynamics. The ramifications of these disturbances extend to equipment malfunctions, reduced operational efficiency, and financial losses. Dynamic voltage restorer (DVRs) are series custom power devices for mitigating these voltage‐related anomalies and use real‐time monitoring and control to quickly inject exact voltages into the grid during disruptions, restoring voltage levels to acceptable levels. This study demonstrates the capacity of DVRs to successfully alleviate power quality concerns, hence improving equipment dependability and system stability by analyzing case studies and simulation findings. The control system used to supply switching signals to the voltage source converter (VSC) of the DVR is based on adaptive Bateman polynomial (ABMP). Traditional DVR control techniques often rely on fixed or linear control strategies, which may not adequately handle varying load conditions and disturbances. ABMP offers an adaptive approach where the control parameters can adjust dynamically based on real‐time system conditions. This adaptive capability enhances the accuracy of voltage restoration, ensuring that the DVR responds optimally to varying loads and disturbances. During voltage sag and swell conditions at the grid side, the VSC injects the compensating voltage in series with the feeder with a constant switching frequency. A battery energy‐supported system (BESS) based DVR is considered for the proposed system. The supply is connected to the critical and sensitive loads. The proposed control scheme is validated through extensive simulation and experimental results.","PeriodicalId":13874,"journal":{"name":"International Journal of Circuit Theory and Applications","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and Control of DVR Based on Adaptive Bateman Polynomial for Power Quality Improvement\",\"authors\":\"Kanchan Bala Rai, Narendra Kumar, Alka Singh\",\"doi\":\"10.1002/cta.4270\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Power quality issues encompass a spectrum of disturbances that affect the stability and reliability of the power supply. This study explores voltage‐related anomalies, including sags, surges, flickers, unbalances, harmonics, interruptions, and swells, examining their origins, characteristics, and repercussions. These issues arise from a myriad of sources, such as load fluctuations, equipment malfunctions, and grid dynamics. The ramifications of these disturbances extend to equipment malfunctions, reduced operational efficiency, and financial losses. Dynamic voltage restorer (DVRs) are series custom power devices for mitigating these voltage‐related anomalies and use real‐time monitoring and control to quickly inject exact voltages into the grid during disruptions, restoring voltage levels to acceptable levels. This study demonstrates the capacity of DVRs to successfully alleviate power quality concerns, hence improving equipment dependability and system stability by analyzing case studies and simulation findings. The control system used to supply switching signals to the voltage source converter (VSC) of the DVR is based on adaptive Bateman polynomial (ABMP). Traditional DVR control techniques often rely on fixed or linear control strategies, which may not adequately handle varying load conditions and disturbances. ABMP offers an adaptive approach where the control parameters can adjust dynamically based on real‐time system conditions. This adaptive capability enhances the accuracy of voltage restoration, ensuring that the DVR responds optimally to varying loads and disturbances. During voltage sag and swell conditions at the grid side, the VSC injects the compensating voltage in series with the feeder with a constant switching frequency. A battery energy‐supported system (BESS) based DVR is considered for the proposed system. The supply is connected to the critical and sensitive loads. The proposed control scheme is validated through extensive simulation and experimental results.\",\"PeriodicalId\":13874,\"journal\":{\"name\":\"International Journal of Circuit Theory and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Circuit Theory and Applications\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/cta.4270\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Circuit Theory and Applications","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/cta.4270","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Design and Control of DVR Based on Adaptive Bateman Polynomial for Power Quality Improvement
Power quality issues encompass a spectrum of disturbances that affect the stability and reliability of the power supply. This study explores voltage‐related anomalies, including sags, surges, flickers, unbalances, harmonics, interruptions, and swells, examining their origins, characteristics, and repercussions. These issues arise from a myriad of sources, such as load fluctuations, equipment malfunctions, and grid dynamics. The ramifications of these disturbances extend to equipment malfunctions, reduced operational efficiency, and financial losses. Dynamic voltage restorer (DVRs) are series custom power devices for mitigating these voltage‐related anomalies and use real‐time monitoring and control to quickly inject exact voltages into the grid during disruptions, restoring voltage levels to acceptable levels. This study demonstrates the capacity of DVRs to successfully alleviate power quality concerns, hence improving equipment dependability and system stability by analyzing case studies and simulation findings. The control system used to supply switching signals to the voltage source converter (VSC) of the DVR is based on adaptive Bateman polynomial (ABMP). Traditional DVR control techniques often rely on fixed or linear control strategies, which may not adequately handle varying load conditions and disturbances. ABMP offers an adaptive approach where the control parameters can adjust dynamically based on real‐time system conditions. This adaptive capability enhances the accuracy of voltage restoration, ensuring that the DVR responds optimally to varying loads and disturbances. During voltage sag and swell conditions at the grid side, the VSC injects the compensating voltage in series with the feeder with a constant switching frequency. A battery energy‐supported system (BESS) based DVR is considered for the proposed system. The supply is connected to the critical and sensitive loads. The proposed control scheme is validated through extensive simulation and experimental results.
期刊介绍:
The scope of the Journal comprises all aspects of the theory and design of analog and digital circuits together with the application of the ideas and techniques of circuit theory in other fields of science and engineering. Examples of the areas covered include: Fundamental Circuit Theory together with its mathematical and computational aspects; Circuit modeling of devices; Synthesis and design of filters and active circuits; Neural networks; Nonlinear and chaotic circuits; Signal processing and VLSI; Distributed, switched and digital circuits; Power electronics; Solid state devices. Contributions to CAD and simulation are welcome.