{"title":"计算张量外反的 $M$-QR 分解和超幂迭代法","authors":"Ratikanta Behera, Krushnachandra Panigrahy, Jajati Keshari Sahoo, Yimin Wei","doi":"arxiv-2409.07007","DOIUrl":null,"url":null,"abstract":"The outer inverse of tensors plays increasingly significant roles in\ncomputational mathematics, numerical analysis, and other generalized inverses\nof tensors. In this paper, we compute outer inverses with prescribed ranges and\nkernels of a given tensor through tensor QR decomposition and hyperpower\niterative method under the M-product structure, which is a family of\ntensor-tensor products, generalization of the t-product and c-product, allows\nus to suit the physical interpretations across those different modes. We\ndiscuss a theoretical analysis of the nineteen-order convergence of the\nproposed tensor-based iterative method. Further, we design effective\ntensor-based algorithms for computing outer inverses using M-QR decomposition\nand hyperpower iterative method. The theoretical results are validated with\nnumerical examples demonstrating the appropriateness of the proposed methods.","PeriodicalId":501162,"journal":{"name":"arXiv - MATH - Numerical Analysis","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"$M$-QR decomposition and hyperpower iterative methods for computing outer inverses of tensors\",\"authors\":\"Ratikanta Behera, Krushnachandra Panigrahy, Jajati Keshari Sahoo, Yimin Wei\",\"doi\":\"arxiv-2409.07007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The outer inverse of tensors plays increasingly significant roles in\\ncomputational mathematics, numerical analysis, and other generalized inverses\\nof tensors. In this paper, we compute outer inverses with prescribed ranges and\\nkernels of a given tensor through tensor QR decomposition and hyperpower\\niterative method under the M-product structure, which is a family of\\ntensor-tensor products, generalization of the t-product and c-product, allows\\nus to suit the physical interpretations across those different modes. We\\ndiscuss a theoretical analysis of the nineteen-order convergence of the\\nproposed tensor-based iterative method. Further, we design effective\\ntensor-based algorithms for computing outer inverses using M-QR decomposition\\nand hyperpower iterative method. The theoretical results are validated with\\nnumerical examples demonstrating the appropriateness of the proposed methods.\",\"PeriodicalId\":501162,\"journal\":{\"name\":\"arXiv - MATH - Numerical Analysis\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Numerical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
张量的外逆在计算数学、数值分析和其他张量的广义求逆中发挥着越来越重要的作用。在本文中,我们通过张量 QR 分解和超幂迭代法计算给定张量的具有规定范围和内核的外逆。M-product 结构是张量-张量乘积的一个族,是 t-product 和 c-product 的广义化,允许我们在这些不同模式之间进行物理解释。我们对所提出的基于张量的迭代法的十九阶收敛性进行了理论分析。此外,我们还设计了基于张量的有效算法,利用 M-QR 分解和超幂迭代法计算外倒数。我们用数值实例验证了理论结果,证明了所提方法的适用性。
$M$-QR decomposition and hyperpower iterative methods for computing outer inverses of tensors
The outer inverse of tensors plays increasingly significant roles in
computational mathematics, numerical analysis, and other generalized inverses
of tensors. In this paper, we compute outer inverses with prescribed ranges and
kernels of a given tensor through tensor QR decomposition and hyperpower
iterative method under the M-product structure, which is a family of
tensor-tensor products, generalization of the t-product and c-product, allows
us to suit the physical interpretations across those different modes. We
discuss a theoretical analysis of the nineteen-order convergence of the
proposed tensor-based iterative method. Further, we design effective
tensor-based algorithms for computing outer inverses using M-QR decomposition
and hyperpower iterative method. The theoretical results are validated with
numerical examples demonstrating the appropriateness of the proposed methods.