利用神经网络进行大规模特征值计算的分布式合作人工智能

Ronald Katende
{"title":"利用神经网络进行大规模特征值计算的分布式合作人工智能","authors":"Ronald Katende","doi":"arxiv-2409.06746","DOIUrl":null,"url":null,"abstract":"This paper presents a novel method for eigenvalue computation using a\ndistributed cooperative neural network framework. Unlike traditional techniques\nthat struggle with scalability in large systems, our decentralized algorithm\nenables multiple autonomous agents to collaboratively estimate the smallest\neigenvalue of large matrices. Each agent uses a localized neural network model,\nrefining its estimates through inter-agent communication. Our approach\nguarantees convergence to the true eigenvalue, even with communication failures\nor network disruptions. Theoretical analysis confirms the robustness and\naccuracy of the method, while empirical results demonstrate its better\nperformance compared to some traditional centralized algorithms","PeriodicalId":501162,"journal":{"name":"arXiv - MATH - Numerical Analysis","volume":"50 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distributed Cooperative AI for Large-Scale Eigenvalue Computations Using Neural Networks\",\"authors\":\"Ronald Katende\",\"doi\":\"arxiv-2409.06746\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel method for eigenvalue computation using a\\ndistributed cooperative neural network framework. Unlike traditional techniques\\nthat struggle with scalability in large systems, our decentralized algorithm\\nenables multiple autonomous agents to collaboratively estimate the smallest\\neigenvalue of large matrices. Each agent uses a localized neural network model,\\nrefining its estimates through inter-agent communication. Our approach\\nguarantees convergence to the true eigenvalue, even with communication failures\\nor network disruptions. Theoretical analysis confirms the robustness and\\naccuracy of the method, while empirical results demonstrate its better\\nperformance compared to some traditional centralized algorithms\",\"PeriodicalId\":501162,\"journal\":{\"name\":\"arXiv - MATH - Numerical Analysis\",\"volume\":\"50 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Numerical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.06746\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06746","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种利用分布式合作神经网络框架进行特征值计算的新方法。与在大型系统中难以扩展的传统技术不同,我们的去中心化算法使多个自主代理能够协同估计大型矩阵的小特征值。每个代理使用一个本地化神经网络模型,通过代理间通信完善其估计值。我们的方法能保证收敛到真正的特征值,即使在通信失败或网络中断的情况下也是如此。理论分析证实了该方法的稳健性和准确性,而实证结果表明,与一些传统的集中式算法相比,它的性能更好
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Distributed Cooperative AI for Large-Scale Eigenvalue Computations Using Neural Networks
This paper presents a novel method for eigenvalue computation using a distributed cooperative neural network framework. Unlike traditional techniques that struggle with scalability in large systems, our decentralized algorithm enables multiple autonomous agents to collaboratively estimate the smallest eigenvalue of large matrices. Each agent uses a localized neural network model, refining its estimates through inter-agent communication. Our approach guarantees convergence to the true eigenvalue, even with communication failures or network disruptions. Theoretical analysis confirms the robustness and accuracy of the method, while empirical results demonstrate its better performance compared to some traditional centralized algorithms
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Lightweight, Geometrically Flexible Fast Algorithm for the Evaluation of Layer and Volume Potentials Adaptive Time-Step Semi-Implicit One-Step Taylor Scheme for Stiff Ordinary Differential Equations Conditions aux limites fortement non lin{é}aires pour les {é}quations d'Euler de la dynamique des gaz Fully guaranteed and computable error bounds on the energy for periodic Kohn-Sham equations with convex density functionals A novel Mortar Method Integration using Radial Basis Functions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1