{"title":"隐式欧拉法的微分反演:符号分析","authors":"Uwe Naumann","doi":"arxiv-2409.05445","DOIUrl":null,"url":null,"abstract":"The implicit Euler method integrates systems of ordinary differential\nequations $$\\frac{d x}{d t}=G(t,x(t))$$ with differentiable right-hand side $G\n: R \\times R^n \\rightarrow R^n$ from an initial state $x=x(0) \\in R^n$ to a\ntarget time $t \\in R$ as $x(t)=E(t,m,x)$ using an equidistant discretization of\nthe time interval $[0,t]$ yielding $m>0$ time steps. We aim to compute the\nproduct of its inverse Jacobian $$ (E')^{-1} \\equiv \\left (\\frac{d E}{d x}\\right )^{-1} \\in R^{n \\times n} $$ with a given vector efficiently. We show that the differential inverse\n$(E')^{-1} \\cdot v$ can be evaluated for given $v \\in R^n$ with a computational\ncost of $\\mathcal{O}(m \\cdot n^2)$ as opposed to the standard $\\mathcal{O}(m\n\\cdot n^3)$ or, naively, even $\\mathcal{O}(m \\cdot n^4).$ The theoretical\nresults are supported by actual run times. A reference implementation is\nprovided.","PeriodicalId":501162,"journal":{"name":"arXiv - MATH - Numerical Analysis","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Differential Inversion of the Implicit Euler Method: Symbolic Analysis\",\"authors\":\"Uwe Naumann\",\"doi\":\"arxiv-2409.05445\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The implicit Euler method integrates systems of ordinary differential\\nequations $$\\\\frac{d x}{d t}=G(t,x(t))$$ with differentiable right-hand side $G\\n: R \\\\times R^n \\\\rightarrow R^n$ from an initial state $x=x(0) \\\\in R^n$ to a\\ntarget time $t \\\\in R$ as $x(t)=E(t,m,x)$ using an equidistant discretization of\\nthe time interval $[0,t]$ yielding $m>0$ time steps. We aim to compute the\\nproduct of its inverse Jacobian $$ (E')^{-1} \\\\equiv \\\\left (\\\\frac{d E}{d x}\\\\right )^{-1} \\\\in R^{n \\\\times n} $$ with a given vector efficiently. We show that the differential inverse\\n$(E')^{-1} \\\\cdot v$ can be evaluated for given $v \\\\in R^n$ with a computational\\ncost of $\\\\mathcal{O}(m \\\\cdot n^2)$ as opposed to the standard $\\\\mathcal{O}(m\\n\\\\cdot n^3)$ or, naively, even $\\\\mathcal{O}(m \\\\cdot n^4).$ The theoretical\\nresults are supported by actual run times. A reference implementation is\\nprovided.\",\"PeriodicalId\":501162,\"journal\":{\"name\":\"arXiv - MATH - Numerical Analysis\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Numerical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.05445\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05445","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Differential Inversion of the Implicit Euler Method: Symbolic Analysis
The implicit Euler method integrates systems of ordinary differential
equations $$\frac{d x}{d t}=G(t,x(t))$$ with differentiable right-hand side $G
: R \times R^n \rightarrow R^n$ from an initial state $x=x(0) \in R^n$ to a
target time $t \in R$ as $x(t)=E(t,m,x)$ using an equidistant discretization of
the time interval $[0,t]$ yielding $m>0$ time steps. We aim to compute the
product of its inverse Jacobian $$ (E')^{-1} \equiv \left (\frac{d E}{d x}\right )^{-1} \in R^{n \times n} $$ with a given vector efficiently. We show that the differential inverse
$(E')^{-1} \cdot v$ can be evaluated for given $v \in R^n$ with a computational
cost of $\mathcal{O}(m \cdot n^2)$ as opposed to the standard $\mathcal{O}(m
\cdot n^3)$ or, naively, even $\mathcal{O}(m \cdot n^4).$ The theoretical
results are supported by actual run times. A reference implementation is
provided.