消防防护服隔热毡的制备和特性

IF 2.2 4区 工程技术 Q1 MATERIALS SCIENCE, TEXTILES Journal of Industrial Textiles Pub Date : 2024-08-23 DOI:10.1177/15280837241276917
Zhenrong Zheng, Lingli Ren, Hongyang Wang
{"title":"消防防护服隔热毡的制备和特性","authors":"Zhenrong Zheng, Lingli Ren, Hongyang Wang","doi":"10.1177/15280837241276917","DOIUrl":null,"url":null,"abstract":"In this paper, preoxidized fibers, flame-retardant acrylic fibers and polyphenylene sulfide (PPS) fibers were chosen to prepare thermal insulation felts by the spunlaced process. The preparation of thermal insulation felts by single-component fibers, bicomponent fibers and multi-component fibers was studied. The breaking strength of the single fibers, flame retardancy, thermal conductivity, air permeability, thermal stability, shrinkage rate after washing, and the breaking strength of the thermal insulation felts were characterized. The results show that, for the single-component felts, preoxidized fiber felt had a longitudinal char length of only 35 mm, which was less than that of flame-retardant acrylic fiber felts and PPS felts. However, its longitudinal breaking strength was only 39.8 N. The bicomponent thermal insulation felt, blended with flame-retardant acrylic fibers and preoxidized fibers, had a higher breaking strength than the single-component felt, but it had char lengths greater than 100 mm after the vertical burning test. When the ratio of the multi-component insulation felts (preoxidized fibers, PPS fibers and flame-retardant acrylic fibers) was 35:60:5, the felt’s longitudinal char length measured 23 mm, which was less than that of the aramid felt 72 mm. This felt’s thermal conductivity was 0.0515 W/mK. It had an air permeability of 1995 mm/s, and the longitudinal dimensional shrinkage rate following the thermal stability test was only 1.1%. Multi-component thermal insulation felts are very important for the development of high-performance firefighting protective clothing.","PeriodicalId":16097,"journal":{"name":"Journal of Industrial Textiles","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation and properties of thermal insulation felts for firefighting protective clothing\",\"authors\":\"Zhenrong Zheng, Lingli Ren, Hongyang Wang\",\"doi\":\"10.1177/15280837241276917\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, preoxidized fibers, flame-retardant acrylic fibers and polyphenylene sulfide (PPS) fibers were chosen to prepare thermal insulation felts by the spunlaced process. The preparation of thermal insulation felts by single-component fibers, bicomponent fibers and multi-component fibers was studied. The breaking strength of the single fibers, flame retardancy, thermal conductivity, air permeability, thermal stability, shrinkage rate after washing, and the breaking strength of the thermal insulation felts were characterized. The results show that, for the single-component felts, preoxidized fiber felt had a longitudinal char length of only 35 mm, which was less than that of flame-retardant acrylic fiber felts and PPS felts. However, its longitudinal breaking strength was only 39.8 N. The bicomponent thermal insulation felt, blended with flame-retardant acrylic fibers and preoxidized fibers, had a higher breaking strength than the single-component felt, but it had char lengths greater than 100 mm after the vertical burning test. When the ratio of the multi-component insulation felts (preoxidized fibers, PPS fibers and flame-retardant acrylic fibers) was 35:60:5, the felt’s longitudinal char length measured 23 mm, which was less than that of the aramid felt 72 mm. This felt’s thermal conductivity was 0.0515 W/mK. It had an air permeability of 1995 mm/s, and the longitudinal dimensional shrinkage rate following the thermal stability test was only 1.1%. Multi-component thermal insulation felts are very important for the development of high-performance firefighting protective clothing.\",\"PeriodicalId\":16097,\"journal\":{\"name\":\"Journal of Industrial Textiles\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Industrial Textiles\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/15280837241276917\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, TEXTILES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial Textiles","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/15280837241276917","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, TEXTILES","Score":null,"Total":0}
引用次数: 0

摘要

本文选择了预氧化纤维、阻燃腈纶纤维和聚苯硫醚(PPS)纤维,通过纺粘法制备隔热毡。研究了单组分纤维、双组分纤维和多组分纤维制备隔热毡的情况。对单组分纤维的断裂强度、阻燃性、导热性、透气性、热稳定性、洗涤后收缩率以及隔热毡的断裂强度进行了表征。结果表明,就单组分毡而言,预氧化纤维毡的纵向炭化长度仅为 35 毫米,小于阻燃丙烯酸纤维毡和聚苯硫醚毡。由阻燃腈纶纤维和预氧化纤维混合而成的双组分隔热毡的断裂强度高于单组分隔热毡,但在垂直燃烧试验后,其纵向炭化长度大于 100 毫米。当多组分绝缘毡(预氧化纤维、PPS 纤维和阻燃腈纶纤维)的比例为 35:60:5 时,毡的纵向炭化长度为 23 毫米,小于芳纶毡的 72 毫米。这种毡的导热系数为 0.0515 W/mK。它的透气性为 1995 毫米/秒,热稳定性测试后的纵向尺寸收缩率仅为 1.1%。多组分隔热毡对于开发高性能消防防护服非常重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Preparation and properties of thermal insulation felts for firefighting protective clothing
In this paper, preoxidized fibers, flame-retardant acrylic fibers and polyphenylene sulfide (PPS) fibers were chosen to prepare thermal insulation felts by the spunlaced process. The preparation of thermal insulation felts by single-component fibers, bicomponent fibers and multi-component fibers was studied. The breaking strength of the single fibers, flame retardancy, thermal conductivity, air permeability, thermal stability, shrinkage rate after washing, and the breaking strength of the thermal insulation felts were characterized. The results show that, for the single-component felts, preoxidized fiber felt had a longitudinal char length of only 35 mm, which was less than that of flame-retardant acrylic fiber felts and PPS felts. However, its longitudinal breaking strength was only 39.8 N. The bicomponent thermal insulation felt, blended with flame-retardant acrylic fibers and preoxidized fibers, had a higher breaking strength than the single-component felt, but it had char lengths greater than 100 mm after the vertical burning test. When the ratio of the multi-component insulation felts (preoxidized fibers, PPS fibers and flame-retardant acrylic fibers) was 35:60:5, the felt’s longitudinal char length measured 23 mm, which was less than that of the aramid felt 72 mm. This felt’s thermal conductivity was 0.0515 W/mK. It had an air permeability of 1995 mm/s, and the longitudinal dimensional shrinkage rate following the thermal stability test was only 1.1%. Multi-component thermal insulation felts are very important for the development of high-performance firefighting protective clothing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Industrial Textiles
Journal of Industrial Textiles MATERIALS SCIENCE, TEXTILES-
CiteScore
5.30
自引率
18.80%
发文量
165
审稿时长
2.3 months
期刊介绍: The Journal of Industrial Textiles is the only peer reviewed journal devoted exclusively to technology, processing, methodology, modelling and applications in technical textiles, nonwovens, coated and laminated fabrics, textile composites and nanofibers.
期刊最新文献
Influence of honeycomb structures on fluids transmission and heat retention properties; An initiative towards stretchable weaves Experimental study on protective performance of ACF sandwich composites with different configurations in high-velocity impact Comprehensive study of the off-axis mechanical behaviors of a Polytetrafluoroethylene‐ coated fabric after 23 Years of service at Shanghai stadium Transformation of zinc acetate into ZnO nanofibers for enhanced NOx gas sensing: Cost-effective strategies and additive-free optimization Multifunctional sandwich materials with ROTIS structure for improved thermal and electrical properties in construction application
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1