铸态 Mg-3Sn-2Y-1Zn-0.6Ca 合金的腐蚀和机械性能研究

IF 2.6 3区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING International Journal of Metalcasting Pub Date : 2024-08-21 DOI:10.1007/s40962-024-01425-2
İlker Özkan, Güven Yarkadaş
{"title":"铸态 Mg-3Sn-2Y-1Zn-0.6Ca 合金的腐蚀和机械性能研究","authors":"İlker Özkan, Güven Yarkadaş","doi":"10.1007/s40962-024-01425-2","DOIUrl":null,"url":null,"abstract":"<p>In this investigation, a pure magnesium ingot, tin, yttrium, zinc, and calcium granules were used to create the alloy Mg-3Sn-2Y-1Zn-0.6Ca. An electric resistance furnace was used to melt the alloy, and a gas combination with 4% sulfur hexafluoride and 96% argon was utilized to provide a protective environment. Scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD) were used to analyze the generated alloy’s phase and explore its microstructure. By using nanoindentation analysis, the nanohardness value (HN) and the decreased elastic modulus (Er) of the alloy were calculated. The alloy underwent tensile testing at body temperature of 36.5 °C. Immersion and potentiodynamic polarization experiments were performed in a salt solution at 36.5 °C to measure the alloy’s corrosion resistance. As a result of corrosion tests, the steady-state corrosion potential (Ecorr) and polarization parameters of the alloy were obtained.</p>","PeriodicalId":14231,"journal":{"name":"International Journal of Metalcasting","volume":"1 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of Corrosion and Mechanical Properties of as-Cast Mg-3Sn-2Y-1Zn-0.6Ca Alloy\",\"authors\":\"İlker Özkan, Güven Yarkadaş\",\"doi\":\"10.1007/s40962-024-01425-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this investigation, a pure magnesium ingot, tin, yttrium, zinc, and calcium granules were used to create the alloy Mg-3Sn-2Y-1Zn-0.6Ca. An electric resistance furnace was used to melt the alloy, and a gas combination with 4% sulfur hexafluoride and 96% argon was utilized to provide a protective environment. Scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD) were used to analyze the generated alloy’s phase and explore its microstructure. By using nanoindentation analysis, the nanohardness value (HN) and the decreased elastic modulus (Er) of the alloy were calculated. The alloy underwent tensile testing at body temperature of 36.5 °C. Immersion and potentiodynamic polarization experiments were performed in a salt solution at 36.5 °C to measure the alloy’s corrosion resistance. As a result of corrosion tests, the steady-state corrosion potential (Ecorr) and polarization parameters of the alloy were obtained.</p>\",\"PeriodicalId\":14231,\"journal\":{\"name\":\"International Journal of Metalcasting\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Metalcasting\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s40962-024-01425-2\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Metalcasting","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s40962-024-01425-2","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,使用了纯镁锭、锡、钇、锌和钙颗粒来制造合金 Mg-3Sn-2Y-1Zn-0.6Ca。使用电阻炉熔化合金,并使用 4% 的六氟化硫和 96% 的氩气组合提供保护环境。使用扫描电子显微镜(SEM)、能量色散光谱(EDS)和 X 射线衍射(XRD)分析生成合金的相位并探究其微观结构。通过纳米压痕分析,计算了合金的纳米硬度值(HN)和降低的弹性模量(Er)。合金在 36.5 °C 的体温下进行了拉伸测试。在 36.5 °C 的盐溶液中进行了浸泡和电位极化实验,以测量合金的耐腐蚀性。通过腐蚀试验,获得了合金的稳态腐蚀电位(Ecorr)和极化参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Investigation of Corrosion and Mechanical Properties of as-Cast Mg-3Sn-2Y-1Zn-0.6Ca Alloy

In this investigation, a pure magnesium ingot, tin, yttrium, zinc, and calcium granules were used to create the alloy Mg-3Sn-2Y-1Zn-0.6Ca. An electric resistance furnace was used to melt the alloy, and a gas combination with 4% sulfur hexafluoride and 96% argon was utilized to provide a protective environment. Scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD) were used to analyze the generated alloy’s phase and explore its microstructure. By using nanoindentation analysis, the nanohardness value (HN) and the decreased elastic modulus (Er) of the alloy were calculated. The alloy underwent tensile testing at body temperature of 36.5 °C. Immersion and potentiodynamic polarization experiments were performed in a salt solution at 36.5 °C to measure the alloy’s corrosion resistance. As a result of corrosion tests, the steady-state corrosion potential (Ecorr) and polarization parameters of the alloy were obtained.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Metalcasting
International Journal of Metalcasting 工程技术-冶金工程
CiteScore
4.20
自引率
42.30%
发文量
174
审稿时长
>12 weeks
期刊介绍: The International Journal of Metalcasting is dedicated to leading the transfer of research and technology for the global metalcasting industry. The quarterly publication keeps the latest developments in metalcasting research and technology in front of the scientific leaders in our global industry throughout the year. All papers published in the the journal are approved after a rigorous peer review process. The editorial peer review board represents three international metalcasting groups: academia (metalcasting professors), science and research (personnel from national labs, research and scientific institutions), and industry (leading technical personnel from metalcasting facilities).
期刊最新文献
Effect of Austenitization Time on Corrosion and Wear Resistance in Austempered Ductile Iron From the Editor Numerical Simulation and Experimental Investigation of Microstructure Evolution and Flow Behavior in the Rheological Squeeze Casting Process of A356 Alloy The Effect of N Content on the Microstructure and Wear Resistance of Improved High-Carbon Chromium Bearing Steel Enhanced Classification of Refractory Coatings in Foundries: A VPCA-Based Machine Learning Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1