{"title":"氮含量对改进型高碳铬轴承钢显微组织和耐磨性的影响","authors":"Jincheng Liao, Jiamin Song, Yitao Yang","doi":"10.1007/s40962-024-01443-0","DOIUrl":null,"url":null,"abstract":"<p>The impact of varying nitrogen (N) contents (65 ppm, 90 ppm, 115 ppm, 140 ppm) on the microstructure and wear resistance of high-carbon chromium bearing steel enriched with niobium was explored through optical microscopy (OM), scanning electron microscopy (SEM), electrolytic extraction, X-ray diffraction (XRD), and room temperature dry sliding friction and wear tests. The findings indicate that an optimal nitrogen addition can effectively refine grains and precipitates. Increasing nitrogen content led to a rise in NbCrN formation, with nitrogen increasingly substituting for carbon in NbC, resulting in the creation of Nb(C,N). The niobium-containing precipitates progressively assumed elongated shapes. At a nitrogen level of 115 ppm, the experimental steel demonstrated superior wear resistance, primarily due to the Mechanical Mixture Layer (MML) mitigating metal-to-metal friction and the hard precipitates of niobium and nitrogen in the matrix obstructing abrasive grain displacement. Consequently, the wear mechanism evolved from abrasive to oxidized adhesive wear.</p>","PeriodicalId":14231,"journal":{"name":"International Journal of Metalcasting","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Effect of N Content on the Microstructure and Wear Resistance of Improved High-Carbon Chromium Bearing Steel\",\"authors\":\"Jincheng Liao, Jiamin Song, Yitao Yang\",\"doi\":\"10.1007/s40962-024-01443-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The impact of varying nitrogen (N) contents (65 ppm, 90 ppm, 115 ppm, 140 ppm) on the microstructure and wear resistance of high-carbon chromium bearing steel enriched with niobium was explored through optical microscopy (OM), scanning electron microscopy (SEM), electrolytic extraction, X-ray diffraction (XRD), and room temperature dry sliding friction and wear tests. The findings indicate that an optimal nitrogen addition can effectively refine grains and precipitates. Increasing nitrogen content led to a rise in NbCrN formation, with nitrogen increasingly substituting for carbon in NbC, resulting in the creation of Nb(C,N). The niobium-containing precipitates progressively assumed elongated shapes. At a nitrogen level of 115 ppm, the experimental steel demonstrated superior wear resistance, primarily due to the Mechanical Mixture Layer (MML) mitigating metal-to-metal friction and the hard precipitates of niobium and nitrogen in the matrix obstructing abrasive grain displacement. Consequently, the wear mechanism evolved from abrasive to oxidized adhesive wear.</p>\",\"PeriodicalId\":14231,\"journal\":{\"name\":\"International Journal of Metalcasting\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Metalcasting\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s40962-024-01443-0\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Metalcasting","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s40962-024-01443-0","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
The Effect of N Content on the Microstructure and Wear Resistance of Improved High-Carbon Chromium Bearing Steel
The impact of varying nitrogen (N) contents (65 ppm, 90 ppm, 115 ppm, 140 ppm) on the microstructure and wear resistance of high-carbon chromium bearing steel enriched with niobium was explored through optical microscopy (OM), scanning electron microscopy (SEM), electrolytic extraction, X-ray diffraction (XRD), and room temperature dry sliding friction and wear tests. The findings indicate that an optimal nitrogen addition can effectively refine grains and precipitates. Increasing nitrogen content led to a rise in NbCrN formation, with nitrogen increasingly substituting for carbon in NbC, resulting in the creation of Nb(C,N). The niobium-containing precipitates progressively assumed elongated shapes. At a nitrogen level of 115 ppm, the experimental steel demonstrated superior wear resistance, primarily due to the Mechanical Mixture Layer (MML) mitigating metal-to-metal friction and the hard precipitates of niobium and nitrogen in the matrix obstructing abrasive grain displacement. Consequently, the wear mechanism evolved from abrasive to oxidized adhesive wear.
期刊介绍:
The International Journal of Metalcasting is dedicated to leading the transfer of research and technology for the global metalcasting industry. The quarterly publication keeps the latest developments in metalcasting research and technology in front of the scientific leaders in our global industry throughout the year. All papers published in the the journal are approved after a rigorous peer review process. The editorial peer review board represents three international metalcasting groups: academia (metalcasting professors), science and research (personnel from national labs, research and scientific institutions), and industry (leading technical personnel from metalcasting facilities).