{"title":"水稻根相关微生物群的动态变化与土壤营养有关","authors":"Asahi Adachi, Yuniar Devi Utami, John Jewish Arellano Dominguez, Masako Fuji, Sumire Kirita, Shunsuke Imai, Takumi Murakami, Yuichi Hongoh, Rina Shinjo, Takehiro Kamiya, Toru Fujiwara, Kiwamu Minamisawa, Naoaki Ono, Shigehiko Kanaya, Yusuke Saijo","doi":"10.1101/2024.09.02.610732","DOIUrl":null,"url":null,"abstract":"Plants accommodate diverse microbial communities (microbiomes), which can change dynamically during plant adaptation to varying environmental conditions. However, the direction of these changes and the underlying mechanisms driving them, particularly in crops adapting to the field conditions, remain poorly understood.\nWe investigate the root-associated microbiome of rice (Oryza sativa L.) using 16S rRNA gene amplicon and metagenome sequencing, across four consecutive cultivation seasons in a high-yield, non-fertilized, and pesticide-free paddy field, compared to a neighboring fertilized and pesticide-treated field.\nOur findings reveal that root microbial community shifts and diverges based on soil fertilization status and plant developmental stages. Notably, nitrogen-fixing bacteria such as Telmatospirillum, Bradyrhizobium and Rhizomicrobium were over-represented in rice grown in the non-fertilized field, implying that the assembly of these microbes supports rice adaptation to nutrient-deficient environments. A machine learning model trained on the microbiome data successfully predicted soil fertilization status, highlighting the potential of root microbiome analysis in forecasting soil nutrition levels. Additionally, we observed significant changes in the root microbiome of ccamk mutants, which lack a master regulator of mycorrhizal symbiosis, under laboratory conditions but not in the field, suggesting a condition-dependent role for CCaMK in establishing microbiomes in paddy rice.","PeriodicalId":501341,"journal":{"name":"bioRxiv - Plant Biology","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Soil nutrition-dependent dynamics of the root-associated microbiome in paddy rice\",\"authors\":\"Asahi Adachi, Yuniar Devi Utami, John Jewish Arellano Dominguez, Masako Fuji, Sumire Kirita, Shunsuke Imai, Takumi Murakami, Yuichi Hongoh, Rina Shinjo, Takehiro Kamiya, Toru Fujiwara, Kiwamu Minamisawa, Naoaki Ono, Shigehiko Kanaya, Yusuke Saijo\",\"doi\":\"10.1101/2024.09.02.610732\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Plants accommodate diverse microbial communities (microbiomes), which can change dynamically during plant adaptation to varying environmental conditions. However, the direction of these changes and the underlying mechanisms driving them, particularly in crops adapting to the field conditions, remain poorly understood.\\nWe investigate the root-associated microbiome of rice (Oryza sativa L.) using 16S rRNA gene amplicon and metagenome sequencing, across four consecutive cultivation seasons in a high-yield, non-fertilized, and pesticide-free paddy field, compared to a neighboring fertilized and pesticide-treated field.\\nOur findings reveal that root microbial community shifts and diverges based on soil fertilization status and plant developmental stages. Notably, nitrogen-fixing bacteria such as Telmatospirillum, Bradyrhizobium and Rhizomicrobium were over-represented in rice grown in the non-fertilized field, implying that the assembly of these microbes supports rice adaptation to nutrient-deficient environments. A machine learning model trained on the microbiome data successfully predicted soil fertilization status, highlighting the potential of root microbiome analysis in forecasting soil nutrition levels. Additionally, we observed significant changes in the root microbiome of ccamk mutants, which lack a master regulator of mycorrhizal symbiosis, under laboratory conditions but not in the field, suggesting a condition-dependent role for CCaMK in establishing microbiomes in paddy rice.\",\"PeriodicalId\":501341,\"journal\":{\"name\":\"bioRxiv - Plant Biology\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv - Plant Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.09.02.610732\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Plant Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.02.610732","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Soil nutrition-dependent dynamics of the root-associated microbiome in paddy rice
Plants accommodate diverse microbial communities (microbiomes), which can change dynamically during plant adaptation to varying environmental conditions. However, the direction of these changes and the underlying mechanisms driving them, particularly in crops adapting to the field conditions, remain poorly understood.
We investigate the root-associated microbiome of rice (Oryza sativa L.) using 16S rRNA gene amplicon and metagenome sequencing, across four consecutive cultivation seasons in a high-yield, non-fertilized, and pesticide-free paddy field, compared to a neighboring fertilized and pesticide-treated field.
Our findings reveal that root microbial community shifts and diverges based on soil fertilization status and plant developmental stages. Notably, nitrogen-fixing bacteria such as Telmatospirillum, Bradyrhizobium and Rhizomicrobium were over-represented in rice grown in the non-fertilized field, implying that the assembly of these microbes supports rice adaptation to nutrient-deficient environments. A machine learning model trained on the microbiome data successfully predicted soil fertilization status, highlighting the potential of root microbiome analysis in forecasting soil nutrition levels. Additionally, we observed significant changes in the root microbiome of ccamk mutants, which lack a master regulator of mycorrhizal symbiosis, under laboratory conditions but not in the field, suggesting a condition-dependent role for CCaMK in establishing microbiomes in paddy rice.