人工智能辅助数据可视化的形成性研究

Rania Saber, Anna Fariha
{"title":"人工智能辅助数据可视化的形成性研究","authors":"Rania Saber, Anna Fariha","doi":"arxiv-2409.06892","DOIUrl":null,"url":null,"abstract":"This formative study investigates the impact of data quality on AI-assisted\ndata visualizations, focusing on how uncleaned datasets influence the outcomes\nof these tools. By generating visualizations from datasets with inherent\nquality issues, the research aims to identify and categorize the specific\nvisualization problems that arise. The study further explores potential methods\nand tools to address these visualization challenges efficiently and\neffectively. Although tool development has not yet been undertaken, the\nfindings emphasize enhancing AI visualization tools to handle flawed data\nbetter. This research underscores the critical need for more robust,\nuser-friendly solutions that facilitate quicker and easier correction of data\nand visualization errors, thereby improving the overall reliability and\nusability of AI-assisted data visualization processes.","PeriodicalId":501541,"journal":{"name":"arXiv - CS - Human-Computer Interaction","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Formative Study for AI-assisted Data Visualization\",\"authors\":\"Rania Saber, Anna Fariha\",\"doi\":\"arxiv-2409.06892\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This formative study investigates the impact of data quality on AI-assisted\\ndata visualizations, focusing on how uncleaned datasets influence the outcomes\\nof these tools. By generating visualizations from datasets with inherent\\nquality issues, the research aims to identify and categorize the specific\\nvisualization problems that arise. The study further explores potential methods\\nand tools to address these visualization challenges efficiently and\\neffectively. Although tool development has not yet been undertaken, the\\nfindings emphasize enhancing AI visualization tools to handle flawed data\\nbetter. This research underscores the critical need for more robust,\\nuser-friendly solutions that facilitate quicker and easier correction of data\\nand visualization errors, thereby improving the overall reliability and\\nusability of AI-assisted data visualization processes.\",\"PeriodicalId\":501541,\"journal\":{\"name\":\"arXiv - CS - Human-Computer Interaction\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Human-Computer Interaction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.06892\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Human-Computer Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06892","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本形成性研究调查了数据质量对人工智能辅助数据可视化的影响,重点关注未清理的数据集如何影响这些工具的结果。通过从存在固有质量问题的数据集生成可视化数据,本研究旨在识别和归类出现的具体可视化问题。研究还将进一步探索潜在的方法和工具,以便高效、有效地应对这些可视化挑战。虽然尚未进行工具开发,但研究结果强调要加强人工智能可视化工具,以处理有缺陷的数据集。这项研究强调,亟需更加强大、用户友好的解决方案,以便更快、更轻松地纠正数据和可视化错误,从而提高人工智能辅助数据可视化流程的整体可靠性和可用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Formative Study for AI-assisted Data Visualization
This formative study investigates the impact of data quality on AI-assisted data visualizations, focusing on how uncleaned datasets influence the outcomes of these tools. By generating visualizations from datasets with inherent quality issues, the research aims to identify and categorize the specific visualization problems that arise. The study further explores potential methods and tools to address these visualization challenges efficiently and effectively. Although tool development has not yet been undertaken, the findings emphasize enhancing AI visualization tools to handle flawed data better. This research underscores the critical need for more robust, user-friendly solutions that facilitate quicker and easier correction of data and visualization errors, thereby improving the overall reliability and usability of AI-assisted data visualization processes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Equimetrics -- Applying HAR principles to equestrian activities AI paintings vs. Human Paintings? Deciphering Public Interactions and Perceptions towards AI-Generated Paintings on TikTok From Data Stories to Dialogues: A Randomised Controlled Trial of Generative AI Agents and Data Storytelling in Enhancing Data Visualisation Comprehension Exploring Gaze Pattern in Autistic Children: Clustering, Visualization, and Prediction Revealing the Challenge of Detecting Character Knowledge Errors in LLM Role-Playing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1