NSP:神经符号自然语言导航规划器

William English, Dominic Simon, Rickard Ewetz, Sumit Jha
{"title":"NSP:神经符号自然语言导航规划器","authors":"William English, Dominic Simon, Rickard Ewetz, Sumit Jha","doi":"arxiv-2409.06859","DOIUrl":null,"url":null,"abstract":"Path planners that can interpret free-form natural language instructions hold\npromise to automate a wide range of robotics applications. These planners\nsimplify user interactions and enable intuitive control over complex\nsemi-autonomous systems. While existing symbolic approaches offer guarantees on\nthe correctness and efficiency, they struggle to parse free-form natural\nlanguage inputs. Conversely, neural approaches based on pre-trained Large\nLanguage Models (LLMs) can manage natural language inputs but lack performance\nguarantees. In this paper, we propose a neuro-symbolic framework for path\nplanning from natural language inputs called NSP. The framework leverages the\nneural reasoning abilities of LLMs to i) craft symbolic representations of the\nenvironment and ii) a symbolic path planning algorithm. Next, a solution to the\npath planning problem is obtained by executing the algorithm on the environment\nrepresentation. The framework uses a feedback loop from the symbolic execution\nenvironment to the neural generation process to self-correct syntax errors and\nsatisfy execution time constraints. We evaluate our neuro-symbolic approach\nusing a benchmark suite with 1500 path-planning problems. The experimental\nevaluation shows that our neuro-symbolic approach produces 90.1% valid paths\nthat are on average 19-77% shorter than state-of-the-art neural approaches.","PeriodicalId":501541,"journal":{"name":"arXiv - CS - Human-Computer Interaction","volume":"36 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NSP: A Neuro-Symbolic Natural Language Navigational Planner\",\"authors\":\"William English, Dominic Simon, Rickard Ewetz, Sumit Jha\",\"doi\":\"arxiv-2409.06859\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Path planners that can interpret free-form natural language instructions hold\\npromise to automate a wide range of robotics applications. These planners\\nsimplify user interactions and enable intuitive control over complex\\nsemi-autonomous systems. While existing symbolic approaches offer guarantees on\\nthe correctness and efficiency, they struggle to parse free-form natural\\nlanguage inputs. Conversely, neural approaches based on pre-trained Large\\nLanguage Models (LLMs) can manage natural language inputs but lack performance\\nguarantees. In this paper, we propose a neuro-symbolic framework for path\\nplanning from natural language inputs called NSP. The framework leverages the\\nneural reasoning abilities of LLMs to i) craft symbolic representations of the\\nenvironment and ii) a symbolic path planning algorithm. Next, a solution to the\\npath planning problem is obtained by executing the algorithm on the environment\\nrepresentation. The framework uses a feedback loop from the symbolic execution\\nenvironment to the neural generation process to self-correct syntax errors and\\nsatisfy execution time constraints. We evaluate our neuro-symbolic approach\\nusing a benchmark suite with 1500 path-planning problems. The experimental\\nevaluation shows that our neuro-symbolic approach produces 90.1% valid paths\\nthat are on average 19-77% shorter than state-of-the-art neural approaches.\",\"PeriodicalId\":501541,\"journal\":{\"name\":\"arXiv - CS - Human-Computer Interaction\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Human-Computer Interaction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.06859\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Human-Computer Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06859","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

能够解释自由格式自然语言指令的路径规划器有望实现各种机器人应用的自动化。这些规划器可简化用户交互,实现对复杂半自动系统的直观控制。虽然现有的符号方法能保证正确性和效率,但在解析自由格式的自然语言输入时却显得力不从心。相反,基于预先训练的大型语言模型(LLM)的神经方法可以管理自然语言输入,但缺乏性能保证。在本文中,我们提出了一种用于根据自然语言输入进行路径规划的神经符号框架,称为 NSP。该框架利用 LLM 的神经推理能力来 i) 制作环境的符号表示和 ii) 符号路径规划算法。然后,通过在环境表示上执行算法,获得路径规划问题的解决方案。该框架使用从符号执行环境到神经生成过程的反馈回路来自我纠正语法错误并满足执行时间限制。我们使用一个包含 1500 个路径规划问题的基准套件来评估我们的神经符号方法。实验评估结果表明,我们的神经符号方法生成了 90.1% 的有效路径,比最先进的神经方法平均缩短了 19-77% 的时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
NSP: A Neuro-Symbolic Natural Language Navigational Planner
Path planners that can interpret free-form natural language instructions hold promise to automate a wide range of robotics applications. These planners simplify user interactions and enable intuitive control over complex semi-autonomous systems. While existing symbolic approaches offer guarantees on the correctness and efficiency, they struggle to parse free-form natural language inputs. Conversely, neural approaches based on pre-trained Large Language Models (LLMs) can manage natural language inputs but lack performance guarantees. In this paper, we propose a neuro-symbolic framework for path planning from natural language inputs called NSP. The framework leverages the neural reasoning abilities of LLMs to i) craft symbolic representations of the environment and ii) a symbolic path planning algorithm. Next, a solution to the path planning problem is obtained by executing the algorithm on the environment representation. The framework uses a feedback loop from the symbolic execution environment to the neural generation process to self-correct syntax errors and satisfy execution time constraints. We evaluate our neuro-symbolic approach using a benchmark suite with 1500 path-planning problems. The experimental evaluation shows that our neuro-symbolic approach produces 90.1% valid paths that are on average 19-77% shorter than state-of-the-art neural approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Equimetrics -- Applying HAR principles to equestrian activities AI paintings vs. Human Paintings? Deciphering Public Interactions and Perceptions towards AI-Generated Paintings on TikTok From Data Stories to Dialogues: A Randomised Controlled Trial of Generative AI Agents and Data Storytelling in Enhancing Data Visualisation Comprehension Exploring Gaze Pattern in Autistic Children: Clustering, Visualization, and Prediction Revealing the Challenge of Detecting Character Knowledge Errors in LLM Role-Playing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1