通过人体阻抗调制改善视觉-触觉感知

Xiaoxiao Cheng, Shixian Shen, Ekaterina Ivanova, Gerolamo Carboni, Atsushi Takagi, Etienne Burdet
{"title":"通过人体阻抗调制改善视觉-触觉感知","authors":"Xiaoxiao Cheng, Shixian Shen, Ekaterina Ivanova, Gerolamo Carboni, Atsushi Takagi, Etienne Burdet","doi":"arxiv-2409.06124","DOIUrl":null,"url":null,"abstract":"Humans activate muscles to shape the mechanical interaction with their\nenvironment, but can they harness this control mechanism to best sense the\nenvironment? We investigated how participants adapt their muscle activation to\nvisual and haptic information when tracking a randomly moving target with a\nrobotic interface. The results exhibit a differentiated effect of these sensory\nmodalities, where participants' muscle cocontraction increases with the haptic\nnoise and decreases with the visual noise, in apparent contradiction to\nprevious results. These results can be explained, and reconciled with previous\nfindings, when considering muscle spring like mechanics, where stiffness\nincreases with cocontraction to regulate motion guidance. Increasing\ncocontraction to more closely follow the motion plan favors accurate visual\nover haptic information, while decreasing it avoids injecting visual noise and\nrelies on accurate haptic information. We formulated this active sensing\nmechanism as the optimization of visuo-haptic information and effort. This OIE\nmodel can explain the adaptation of muscle activity to unimodal and multimodal\nsensory information when interacting with fixed or dynamic environments, or\nwith another human, and can be used to optimize human-robot interaction.","PeriodicalId":501541,"journal":{"name":"arXiv - CS - Human-Computer Interaction","volume":"10 5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Human Impedance Modulation to Improve Visuo-Haptic Perception\",\"authors\":\"Xiaoxiao Cheng, Shixian Shen, Ekaterina Ivanova, Gerolamo Carboni, Atsushi Takagi, Etienne Burdet\",\"doi\":\"arxiv-2409.06124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Humans activate muscles to shape the mechanical interaction with their\\nenvironment, but can they harness this control mechanism to best sense the\\nenvironment? We investigated how participants adapt their muscle activation to\\nvisual and haptic information when tracking a randomly moving target with a\\nrobotic interface. The results exhibit a differentiated effect of these sensory\\nmodalities, where participants' muscle cocontraction increases with the haptic\\nnoise and decreases with the visual noise, in apparent contradiction to\\nprevious results. These results can be explained, and reconciled with previous\\nfindings, when considering muscle spring like mechanics, where stiffness\\nincreases with cocontraction to regulate motion guidance. Increasing\\ncocontraction to more closely follow the motion plan favors accurate visual\\nover haptic information, while decreasing it avoids injecting visual noise and\\nrelies on accurate haptic information. We formulated this active sensing\\nmechanism as the optimization of visuo-haptic information and effort. This OIE\\nmodel can explain the adaptation of muscle activity to unimodal and multimodal\\nsensory information when interacting with fixed or dynamic environments, or\\nwith another human, and can be used to optimize human-robot interaction.\",\"PeriodicalId\":501541,\"journal\":{\"name\":\"arXiv - CS - Human-Computer Interaction\",\"volume\":\"10 5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Human-Computer Interaction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.06124\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Human-Computer Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

人类通过激活肌肉来形成与周围环境的机械互动,但他们能否利用这种控制机制来最好地感知环境呢?我们研究了参与者在使用机器人界面追踪随机移动的目标时,如何使肌肉激活适应视觉和触觉信息。研究结果表明,这些感觉模式会产生不同的影响,参与者的肌肉收缩会随着触觉噪声的增加而增加,随着视觉噪声的增加而减少,这显然与之前的研究结果相矛盾。如果考虑到肌肉的弹簧力学,这些结果就可以得到解释,并与之前的研究结果相一致。增加牵引力以更紧密地跟随运动计划,有利于获得准确的视觉信息而非触觉信息,而减少牵引力则可避免注入视觉噪音,并依赖于准确的触觉信息。我们将这种主动感应机制表述为视觉-触觉信息和努力的优化。这种 OIE 模型可以解释在与固定或动态环境或与他人进行交互时,肌肉活动对单模态和多模态感知信息的适应,并可用于优化人机交互。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Human Impedance Modulation to Improve Visuo-Haptic Perception
Humans activate muscles to shape the mechanical interaction with their environment, but can they harness this control mechanism to best sense the environment? We investigated how participants adapt their muscle activation to visual and haptic information when tracking a randomly moving target with a robotic interface. The results exhibit a differentiated effect of these sensory modalities, where participants' muscle cocontraction increases with the haptic noise and decreases with the visual noise, in apparent contradiction to previous results. These results can be explained, and reconciled with previous findings, when considering muscle spring like mechanics, where stiffness increases with cocontraction to regulate motion guidance. Increasing cocontraction to more closely follow the motion plan favors accurate visual over haptic information, while decreasing it avoids injecting visual noise and relies on accurate haptic information. We formulated this active sensing mechanism as the optimization of visuo-haptic information and effort. This OIE model can explain the adaptation of muscle activity to unimodal and multimodal sensory information when interacting with fixed or dynamic environments, or with another human, and can be used to optimize human-robot interaction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Equimetrics -- Applying HAR principles to equestrian activities AI paintings vs. Human Paintings? Deciphering Public Interactions and Perceptions towards AI-Generated Paintings on TikTok From Data Stories to Dialogues: A Randomised Controlled Trial of Generative AI Agents and Data Storytelling in Enhancing Data Visualisation Comprehension Exploring Gaze Pattern in Autistic Children: Clustering, Visualization, and Prediction Revealing the Challenge of Detecting Character Knowledge Errors in LLM Role-Playing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1