空间转录组学的可视化合成数据分析

David Hägele, Yuxuan Tang, Daniel Weiskopf
{"title":"空间转录组学的可视化合成数据分析","authors":"David Hägele, Yuxuan Tang, Daniel Weiskopf","doi":"arxiv-2409.07306","DOIUrl":null,"url":null,"abstract":"For the Bio+Med-Vis Challenge 2024, we propose a visual analytics system as a\nredesign for the scatter pie chart visualization of cell type proportions of\nspatial transcriptomics data. Our design uses three linked views: a view of the\nhistological image of the tissue, a stacked bar chart showing cell type\nproportions of the spots, and a scatter plot showing a dimensionality reduction\nof the multivariate proportions. Furthermore, we apply a compositional data\nanalysis framework, the Aitchison geometry, to the proportions for\ndimensionality reduction and $k$-means clustering. Leveraging brushing and\nlinking, the system allows one to explore and uncover patterns in the cell type\nmixtures and relate them to their spatial locations on the cellular tissue.\nThis redesign shifts the pattern recognition workload from the human visual\nsystem to computational methods commonly used in visual analytics. We provide\nthe code and setup instructions of our visual analytics system on GitHub\n(https://github.com/UniStuttgart-VISUS/va-for-spatial-transcriptomics).","PeriodicalId":501541,"journal":{"name":"arXiv - CS - Human-Computer Interaction","volume":"36 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Visual Compositional Data Analytics for Spatial Transcriptomics\",\"authors\":\"David Hägele, Yuxuan Tang, Daniel Weiskopf\",\"doi\":\"arxiv-2409.07306\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For the Bio+Med-Vis Challenge 2024, we propose a visual analytics system as a\\nredesign for the scatter pie chart visualization of cell type proportions of\\nspatial transcriptomics data. Our design uses three linked views: a view of the\\nhistological image of the tissue, a stacked bar chart showing cell type\\nproportions of the spots, and a scatter plot showing a dimensionality reduction\\nof the multivariate proportions. Furthermore, we apply a compositional data\\nanalysis framework, the Aitchison geometry, to the proportions for\\ndimensionality reduction and $k$-means clustering. Leveraging brushing and\\nlinking, the system allows one to explore and uncover patterns in the cell type\\nmixtures and relate them to their spatial locations on the cellular tissue.\\nThis redesign shifts the pattern recognition workload from the human visual\\nsystem to computational methods commonly used in visual analytics. We provide\\nthe code and setup instructions of our visual analytics system on GitHub\\n(https://github.com/UniStuttgart-VISUS/va-for-spatial-transcriptomics).\",\"PeriodicalId\":501541,\"journal\":{\"name\":\"arXiv - CS - Human-Computer Interaction\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Human-Computer Interaction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07306\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Human-Computer Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07306","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对 2024 年生物+医学-视觉挑战赛,我们提出了一种视觉分析系统,用于空间转录组学数据细胞类型比例的散点饼图可视化设计。我们的设计使用了三个关联视图:组织的组织学图像视图、显示斑点细胞类型比例的堆叠条形图,以及显示多元比例降维的散点图。此外,我们还将艾奇逊几何(Aitchison geometry)这一组合数据分析框架应用于比例降维和千元均值聚类。利用刷和链接,该系统可以探索和发现细胞类型混合物中的模式,并将它们与细胞组织上的空间位置联系起来。这种重新设计将模式识别的工作量从人类视觉系统转移到视觉分析中常用的计算方法上。我们在 GitHub(https://github.com/UniStuttgart-VISUS/va-for-spatial-transcriptomics) 上提供了视觉分析系统的代码和设置说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Visual Compositional Data Analytics for Spatial Transcriptomics
For the Bio+Med-Vis Challenge 2024, we propose a visual analytics system as a redesign for the scatter pie chart visualization of cell type proportions of spatial transcriptomics data. Our design uses three linked views: a view of the histological image of the tissue, a stacked bar chart showing cell type proportions of the spots, and a scatter plot showing a dimensionality reduction of the multivariate proportions. Furthermore, we apply a compositional data analysis framework, the Aitchison geometry, to the proportions for dimensionality reduction and $k$-means clustering. Leveraging brushing and linking, the system allows one to explore and uncover patterns in the cell type mixtures and relate them to their spatial locations on the cellular tissue. This redesign shifts the pattern recognition workload from the human visual system to computational methods commonly used in visual analytics. We provide the code and setup instructions of our visual analytics system on GitHub (https://github.com/UniStuttgart-VISUS/va-for-spatial-transcriptomics).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Equimetrics -- Applying HAR principles to equestrian activities AI paintings vs. Human Paintings? Deciphering Public Interactions and Perceptions towards AI-Generated Paintings on TikTok From Data Stories to Dialogues: A Randomised Controlled Trial of Generative AI Agents and Data Storytelling in Enhancing Data Visualisation Comprehension Exploring Gaze Pattern in Autistic Children: Clustering, Visualization, and Prediction Revealing the Challenge of Detecting Character Knowledge Errors in LLM Role-Playing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1