糖精诱导玻璃温室猕猴桃和果园葡萄藤产生抗淀粉样假单胞菌 pv. actinidiae (Psa biovar 3) 的能力

IF 2.3 3区 农林科学 Q1 AGRONOMY Plant Pathology Pub Date : 2024-08-12 DOI:10.1111/ppa.13984
Tony Reglinski, Kirstin Wurms, Grant Northcott, Joseph Taylor, Annette Ah Chee, Frank Parry, Christina Fehlmann, Janine Cooney, Dwayne Jensen, Philip Elmer, Stephen Hoyte, Catherine McKenzie, Duncan Hedderley
{"title":"糖精诱导玻璃温室猕猴桃和果园葡萄藤产生抗淀粉样假单胞菌 pv. actinidiae (Psa biovar 3) 的能力","authors":"Tony Reglinski, Kirstin Wurms, Grant Northcott, Joseph Taylor, Annette Ah Chee, Frank Parry, Christina Fehlmann, Janine Cooney, Dwayne Jensen, Philip Elmer, Stephen Hoyte, Catherine McKenzie, Duncan Hedderley","doi":"10.1111/ppa.13984","DOIUrl":null,"url":null,"abstract":"The artificial sweetener saccharin has been reported to enhance resistance against pathogen attack in various plant species. In this study, foliar application of saccharin resulted in increased resistance to leaf infection by <jats:italic>Pseudomonas syringae</jats:italic> pv. <jats:italic>actinidiae</jats:italic> biovar 3 (Psa) in two <jats:italic>Actinidia chinensis</jats:italic> cultivars, Hayward and Zesy002. In glasshouse plants, the application of saccharin at 0.25, 0.5, 1.0 and 2.0 g/L, 1 week before inoculation with Psa, induced a dose‐dependent reduction in leaf necrosis in both cultivars. Saccharin at 2.0 g/L reduced leaf necrosis in Hayward by 77% and in Zesy002 by over 90%. However, saccharin (2.0 g/L) did not inhibit growth of Psa in liquid media, thus suggesting induced resistance (IR) as the primary mode of action against leaf infection. The development of IR in both cultivars was concomitant with the accumulation of salicylic acid (SA) and salicylate glycoside (SAG), and the upregulation of SA‐pathway genes (<jats:italic>PR1</jats:italic> and <jats:italic>PR2</jats:italic>) in treated leaves. In orchard‐grown Hayward vines, saccharin (1.0 g/L) induced the upregulation of SA‐pathway genes and reduced Psa leaf necrosis and flower bud rot by 50% and 25%, respectively, compared with controls. However, saccharin residues were detected in fruit collected from vines that were sprayed with saccharin (1.0 g/L) before flowering. Residue level correlated with application frequency and timing and was highest (0.051 mg/kg) in vines that received three preflowering sprays. This exceeds the default maximum residue limit (MRL; 0.01 mg/kg) for some export markets and could limit the use of saccharin for disease management.","PeriodicalId":20075,"journal":{"name":"Plant Pathology","volume":"12 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Saccharin induces resistance against Pseudomonas syringae pv. actinidiae (Psa biovar 3) in glasshouse kiwifruit and orchard vines\",\"authors\":\"Tony Reglinski, Kirstin Wurms, Grant Northcott, Joseph Taylor, Annette Ah Chee, Frank Parry, Christina Fehlmann, Janine Cooney, Dwayne Jensen, Philip Elmer, Stephen Hoyte, Catherine McKenzie, Duncan Hedderley\",\"doi\":\"10.1111/ppa.13984\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The artificial sweetener saccharin has been reported to enhance resistance against pathogen attack in various plant species. In this study, foliar application of saccharin resulted in increased resistance to leaf infection by <jats:italic>Pseudomonas syringae</jats:italic> pv. <jats:italic>actinidiae</jats:italic> biovar 3 (Psa) in two <jats:italic>Actinidia chinensis</jats:italic> cultivars, Hayward and Zesy002. In glasshouse plants, the application of saccharin at 0.25, 0.5, 1.0 and 2.0 g/L, 1 week before inoculation with Psa, induced a dose‐dependent reduction in leaf necrosis in both cultivars. Saccharin at 2.0 g/L reduced leaf necrosis in Hayward by 77% and in Zesy002 by over 90%. However, saccharin (2.0 g/L) did not inhibit growth of Psa in liquid media, thus suggesting induced resistance (IR) as the primary mode of action against leaf infection. The development of IR in both cultivars was concomitant with the accumulation of salicylic acid (SA) and salicylate glycoside (SAG), and the upregulation of SA‐pathway genes (<jats:italic>PR1</jats:italic> and <jats:italic>PR2</jats:italic>) in treated leaves. In orchard‐grown Hayward vines, saccharin (1.0 g/L) induced the upregulation of SA‐pathway genes and reduced Psa leaf necrosis and flower bud rot by 50% and 25%, respectively, compared with controls. However, saccharin residues were detected in fruit collected from vines that were sprayed with saccharin (1.0 g/L) before flowering. Residue level correlated with application frequency and timing and was highest (0.051 mg/kg) in vines that received three preflowering sprays. This exceeds the default maximum residue limit (MRL; 0.01 mg/kg) for some export markets and could limit the use of saccharin for disease management.\",\"PeriodicalId\":20075,\"journal\":{\"name\":\"Plant Pathology\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Pathology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1111/ppa.13984\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Pathology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/ppa.13984","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

摘要

据报道,人工甜味剂糖精能增强多种植物对病原体侵袭的抵抗力。在这项研究中,叶面喷施糖精增强了两个阳起石栽培品种(Hayward 和 Zesy002)对 Pseudomonas syringae pv. actinidiae biovar 3(Psa)叶片感染的抵抗力。在玻璃温室植株中,在 Psa 接种前一周施用 0.25、0.5、1.0 和 2.0 克/升的糖精,可诱导这两个栽培品种的叶片坏死率呈剂量依赖性下降。糖精(2.0 克/升)可使 Hayward 的叶片坏死率降低 77%,使 Zesy002 的叶片坏死率降低 90%以上。然而,糖精(2.0 克/升)并不能抑制 Psa 在液体培养基中的生长,这表明诱导抗性(IR)是抑制叶片感染的主要作用模式。两种栽培品种产生 IR 的同时,水杨酸(SA)和水杨酸苷(SAG)也在积累,SA 途径基因(PR1 和 PR2)也在处理过的叶片中上调。在果园生长的海沃德葡萄藤中,糖精(1.0 克/升)诱导 SA 途径基因上调,与对照组相比,Psa 叶片坏死率和花芽腐烂率分别降低了 50%和 25%。然而,在开花前喷洒糖精(1.0 克/升)的葡萄树上采集的果实中检测到糖精残留。残留水平与施用频率和时间有关,花前喷洒三次的葡萄树残留水平最高(0.051 mg/kg)。这超过了某些出口市场默认的最大残留限量(MRL;0.01 mg/kg),可能会限制糖精在病害管理中的使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Saccharin induces resistance against Pseudomonas syringae pv. actinidiae (Psa biovar 3) in glasshouse kiwifruit and orchard vines
The artificial sweetener saccharin has been reported to enhance resistance against pathogen attack in various plant species. In this study, foliar application of saccharin resulted in increased resistance to leaf infection by Pseudomonas syringae pv. actinidiae biovar 3 (Psa) in two Actinidia chinensis cultivars, Hayward and Zesy002. In glasshouse plants, the application of saccharin at 0.25, 0.5, 1.0 and 2.0 g/L, 1 week before inoculation with Psa, induced a dose‐dependent reduction in leaf necrosis in both cultivars. Saccharin at 2.0 g/L reduced leaf necrosis in Hayward by 77% and in Zesy002 by over 90%. However, saccharin (2.0 g/L) did not inhibit growth of Psa in liquid media, thus suggesting induced resistance (IR) as the primary mode of action against leaf infection. The development of IR in both cultivars was concomitant with the accumulation of salicylic acid (SA) and salicylate glycoside (SAG), and the upregulation of SA‐pathway genes (PR1 and PR2) in treated leaves. In orchard‐grown Hayward vines, saccharin (1.0 g/L) induced the upregulation of SA‐pathway genes and reduced Psa leaf necrosis and flower bud rot by 50% and 25%, respectively, compared with controls. However, saccharin residues were detected in fruit collected from vines that were sprayed with saccharin (1.0 g/L) before flowering. Residue level correlated with application frequency and timing and was highest (0.051 mg/kg) in vines that received three preflowering sprays. This exceeds the default maximum residue limit (MRL; 0.01 mg/kg) for some export markets and could limit the use of saccharin for disease management.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plant Pathology
Plant Pathology 生物-农艺学
CiteScore
5.60
自引率
7.40%
发文量
147
审稿时长
3 months
期刊介绍: This international journal, owned and edited by the British Society for Plant Pathology, covers all aspects of plant pathology and reaches subscribers in 80 countries. Top quality original research papers and critical reviews from around the world cover: diseases of temperate and tropical plants caused by fungi, bacteria, viruses, phytoplasmas and nematodes; physiological, biochemical, molecular, ecological, genetic and economic aspects of plant pathology; disease epidemiology and modelling; disease appraisal and crop loss assessment; and plant disease control and disease-related crop management.
期刊最新文献
Meloidogyne hapla dominates plant‐parasitic nematode communities associated with kiwifruit orchards in Portugal The growth‐promoting effects of Bacillus amyloliquefaciens W82T‐44 on soybean and its biocontrol potential against soybean Phytophthora root rot Genetic diversity and incidence of cassava bacterial blight (CBB) caused by Xanthomonas phaseoli pv. manihotis in Burkina Faso Control of root rot of red raspberries caused by Phytophthora fragariae var. rubi Molecular epidemiology of Cercospora leaf spot on resistant and susceptible sugar beet hybrids
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1