Tony Reglinski, Kirstin Wurms, Grant Northcott, Joseph Taylor, Annette Ah Chee, Frank Parry, Christina Fehlmann, Janine Cooney, Dwayne Jensen, Philip Elmer, Stephen Hoyte, Catherine McKenzie, Duncan Hedderley
{"title":"糖精诱导玻璃温室猕猴桃和果园葡萄藤产生抗淀粉样假单胞菌 pv. actinidiae (Psa biovar 3) 的能力","authors":"Tony Reglinski, Kirstin Wurms, Grant Northcott, Joseph Taylor, Annette Ah Chee, Frank Parry, Christina Fehlmann, Janine Cooney, Dwayne Jensen, Philip Elmer, Stephen Hoyte, Catherine McKenzie, Duncan Hedderley","doi":"10.1111/ppa.13984","DOIUrl":null,"url":null,"abstract":"The artificial sweetener saccharin has been reported to enhance resistance against pathogen attack in various plant species. In this study, foliar application of saccharin resulted in increased resistance to leaf infection by <jats:italic>Pseudomonas syringae</jats:italic> pv. <jats:italic>actinidiae</jats:italic> biovar 3 (Psa) in two <jats:italic>Actinidia chinensis</jats:italic> cultivars, Hayward and Zesy002. In glasshouse plants, the application of saccharin at 0.25, 0.5, 1.0 and 2.0 g/L, 1 week before inoculation with Psa, induced a dose‐dependent reduction in leaf necrosis in both cultivars. Saccharin at 2.0 g/L reduced leaf necrosis in Hayward by 77% and in Zesy002 by over 90%. However, saccharin (2.0 g/L) did not inhibit growth of Psa in liquid media, thus suggesting induced resistance (IR) as the primary mode of action against leaf infection. The development of IR in both cultivars was concomitant with the accumulation of salicylic acid (SA) and salicylate glycoside (SAG), and the upregulation of SA‐pathway genes (<jats:italic>PR1</jats:italic> and <jats:italic>PR2</jats:italic>) in treated leaves. In orchard‐grown Hayward vines, saccharin (1.0 g/L) induced the upregulation of SA‐pathway genes and reduced Psa leaf necrosis and flower bud rot by 50% and 25%, respectively, compared with controls. However, saccharin residues were detected in fruit collected from vines that were sprayed with saccharin (1.0 g/L) before flowering. Residue level correlated with application frequency and timing and was highest (0.051 mg/kg) in vines that received three preflowering sprays. This exceeds the default maximum residue limit (MRL; 0.01 mg/kg) for some export markets and could limit the use of saccharin for disease management.","PeriodicalId":20075,"journal":{"name":"Plant Pathology","volume":"12 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Saccharin induces resistance against Pseudomonas syringae pv. actinidiae (Psa biovar 3) in glasshouse kiwifruit and orchard vines\",\"authors\":\"Tony Reglinski, Kirstin Wurms, Grant Northcott, Joseph Taylor, Annette Ah Chee, Frank Parry, Christina Fehlmann, Janine Cooney, Dwayne Jensen, Philip Elmer, Stephen Hoyte, Catherine McKenzie, Duncan Hedderley\",\"doi\":\"10.1111/ppa.13984\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The artificial sweetener saccharin has been reported to enhance resistance against pathogen attack in various plant species. In this study, foliar application of saccharin resulted in increased resistance to leaf infection by <jats:italic>Pseudomonas syringae</jats:italic> pv. <jats:italic>actinidiae</jats:italic> biovar 3 (Psa) in two <jats:italic>Actinidia chinensis</jats:italic> cultivars, Hayward and Zesy002. In glasshouse plants, the application of saccharin at 0.25, 0.5, 1.0 and 2.0 g/L, 1 week before inoculation with Psa, induced a dose‐dependent reduction in leaf necrosis in both cultivars. Saccharin at 2.0 g/L reduced leaf necrosis in Hayward by 77% and in Zesy002 by over 90%. However, saccharin (2.0 g/L) did not inhibit growth of Psa in liquid media, thus suggesting induced resistance (IR) as the primary mode of action against leaf infection. The development of IR in both cultivars was concomitant with the accumulation of salicylic acid (SA) and salicylate glycoside (SAG), and the upregulation of SA‐pathway genes (<jats:italic>PR1</jats:italic> and <jats:italic>PR2</jats:italic>) in treated leaves. In orchard‐grown Hayward vines, saccharin (1.0 g/L) induced the upregulation of SA‐pathway genes and reduced Psa leaf necrosis and flower bud rot by 50% and 25%, respectively, compared with controls. However, saccharin residues were detected in fruit collected from vines that were sprayed with saccharin (1.0 g/L) before flowering. Residue level correlated with application frequency and timing and was highest (0.051 mg/kg) in vines that received three preflowering sprays. This exceeds the default maximum residue limit (MRL; 0.01 mg/kg) for some export markets and could limit the use of saccharin for disease management.\",\"PeriodicalId\":20075,\"journal\":{\"name\":\"Plant Pathology\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Pathology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1111/ppa.13984\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Pathology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/ppa.13984","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
Saccharin induces resistance against Pseudomonas syringae pv. actinidiae (Psa biovar 3) in glasshouse kiwifruit and orchard vines
The artificial sweetener saccharin has been reported to enhance resistance against pathogen attack in various plant species. In this study, foliar application of saccharin resulted in increased resistance to leaf infection by Pseudomonas syringae pv. actinidiae biovar 3 (Psa) in two Actinidia chinensis cultivars, Hayward and Zesy002. In glasshouse plants, the application of saccharin at 0.25, 0.5, 1.0 and 2.0 g/L, 1 week before inoculation with Psa, induced a dose‐dependent reduction in leaf necrosis in both cultivars. Saccharin at 2.0 g/L reduced leaf necrosis in Hayward by 77% and in Zesy002 by over 90%. However, saccharin (2.0 g/L) did not inhibit growth of Psa in liquid media, thus suggesting induced resistance (IR) as the primary mode of action against leaf infection. The development of IR in both cultivars was concomitant with the accumulation of salicylic acid (SA) and salicylate glycoside (SAG), and the upregulation of SA‐pathway genes (PR1 and PR2) in treated leaves. In orchard‐grown Hayward vines, saccharin (1.0 g/L) induced the upregulation of SA‐pathway genes and reduced Psa leaf necrosis and flower bud rot by 50% and 25%, respectively, compared with controls. However, saccharin residues were detected in fruit collected from vines that were sprayed with saccharin (1.0 g/L) before flowering. Residue level correlated with application frequency and timing and was highest (0.051 mg/kg) in vines that received three preflowering sprays. This exceeds the default maximum residue limit (MRL; 0.01 mg/kg) for some export markets and could limit the use of saccharin for disease management.
期刊介绍:
This international journal, owned and edited by the British Society for Plant Pathology, covers all aspects of plant pathology and reaches subscribers in 80 countries. Top quality original research papers and critical reviews from around the world cover: diseases of temperate and tropical plants caused by fungi, bacteria, viruses, phytoplasmas and nematodes; physiological, biochemical, molecular, ecological, genetic and economic aspects of plant pathology; disease epidemiology and modelling; disease appraisal and crop loss assessment; and plant disease control and disease-related crop management.