{"title":"用于全灵活计算固态硬盘的容器化存储内处理模型和硬件加速","authors":"Donghyun Gouk, Miryeong Kwon, Hanyeoreum Bae, Myoungsoo Jung","doi":"10.1109/lca.2023.3289828","DOIUrl":null,"url":null,"abstract":"In-storage processing (ISP) efficiently examines large datasets but faces performance and security challenges. We introduce DockerSSD, a flexible ISP model that runs various applications near flash without modification. It employs lightweight OS-level virtualization in modern SSDs for faster ISP and better storage intelligence with a high flexiblity. DockerSSD reuses existing Docker container images for real-time data processing without altering the storage interface or runtime. Our design includes a new communication method and virtual firmware, alongside automated container-related network and I/O handling hardware. DockerSSD achieves a 2× speed improvement and reduces system-level power by 35.7%, on average.","PeriodicalId":51248,"journal":{"name":"IEEE Computer Architecture Letters","volume":"26 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Containerized In-Storage Processing Model and Hardware Acceleration for Fully-Flexible Computational SSDs\",\"authors\":\"Donghyun Gouk, Miryeong Kwon, Hanyeoreum Bae, Myoungsoo Jung\",\"doi\":\"10.1109/lca.2023.3289828\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In-storage processing (ISP) efficiently examines large datasets but faces performance and security challenges. We introduce DockerSSD, a flexible ISP model that runs various applications near flash without modification. It employs lightweight OS-level virtualization in modern SSDs for faster ISP and better storage intelligence with a high flexiblity. DockerSSD reuses existing Docker container images for real-time data processing without altering the storage interface or runtime. Our design includes a new communication method and virtual firmware, alongside automated container-related network and I/O handling hardware. DockerSSD achieves a 2× speed improvement and reduces system-level power by 35.7%, on average.\",\"PeriodicalId\":51248,\"journal\":{\"name\":\"IEEE Computer Architecture Letters\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Computer Architecture Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1109/lca.2023.3289828\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Computer Architecture Letters","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/lca.2023.3289828","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Containerized In-Storage Processing Model and Hardware Acceleration for Fully-Flexible Computational SSDs
In-storage processing (ISP) efficiently examines large datasets but faces performance and security challenges. We introduce DockerSSD, a flexible ISP model that runs various applications near flash without modification. It employs lightweight OS-level virtualization in modern SSDs for faster ISP and better storage intelligence with a high flexiblity. DockerSSD reuses existing Docker container images for real-time data processing without altering the storage interface or runtime. Our design includes a new communication method and virtual firmware, alongside automated container-related network and I/O handling hardware. DockerSSD achieves a 2× speed improvement and reduces system-level power by 35.7%, on average.
期刊介绍:
IEEE Computer Architecture Letters is a rigorously peer-reviewed forum for publishing early, high-impact results in the areas of uni- and multiprocessor computer systems, computer architecture, microarchitecture, workload characterization, performance evaluation and simulation techniques, and power-aware computing. Submissions are welcomed on any topic in computer architecture, especially but not limited to: microprocessor and multiprocessor systems, microarchitecture and ILP processors, workload characterization, performance evaluation and simulation techniques, compiler-hardware and operating system-hardware interactions, interconnect architectures, memory and cache systems, power and thermal issues at the architecture level, I/O architectures and techniques, independent validation of previously published results, analysis of unsuccessful techniques, domain-specific processor architectures (e.g., embedded, graphics, network, etc.), real-time and high-availability architectures, reconfigurable systems.