为锂离子电容器开发包含牺牲盐的混合法拉第电容电极所面临的挑战:Li3V1.95Ni0.05(PO4)3-AC-Li2C4O4 的实例

IF 3.5 4区 化学 Q2 ELECTROCHEMISTRY ChemElectroChem Pub Date : 2024-09-10 DOI:10.1002/celc.202400117
Miguel Granados-Moreno, Maria Arnaiz, Emanuele Gucciardi, Nahom Enkubahri Asres, Eider Goikolea, Jon Ajuria
{"title":"为锂离子电容器开发包含牺牲盐的混合法拉第电容电极所面临的挑战:Li3V1.95Ni0.05(PO4)3-AC-Li2C4O4 的实例","authors":"Miguel Granados-Moreno,&nbsp;Maria Arnaiz,&nbsp;Emanuele Gucciardi,&nbsp;Nahom Enkubahri Asres,&nbsp;Eider Goikolea,&nbsp;Jon Ajuria","doi":"10.1002/celc.202400117","DOIUrl":null,"url":null,"abstract":"<p>The low capacity of activated carbon (AC) electrodes remains as one of the major limiting factors for the development of high energy density lithium-ion capacitors (LICs). Hybridization of capacitive AC electrodes by incorporating faradaic materials into the electrode formulation could be performed to enhance the capacity of the overall device. However, this strategy requires an accurate electrode design to maximize the performance. In this work, Li<sub>3</sub>V<sub>1.95</sub>Ni<sub>0.05</sub>(PO<sub>4</sub>)<sub>3</sub> (LVNP) was selected as faradaic material due to its compatibility with AC, showing high capacity, fast ionic diffusion, and relatively high conductivity. Various formulations and mass loadings have been studied to analyze the impact of incorporating LVNP into the positive electrode on the performance of the hybrid electrode. Moreover, for practical LIC applications, a sacrificial salt -dilithium squarate, Li<sub>2</sub>C<sub>4</sub>O<sub>4</sub>- was included in the hybrid electrode as a pre-lithiation additive, developing a ternary electrode. The sacrificial salt oxidized releasing lithium ions, while the electrochemical performance of the hybrid positive electrode remained almost unaltered. Finally, a cycle life test combined with a post-mortem analysis allows understanding the failure mechanisms of the electrode, suggesting the need of further improvements of the electrolyte and electrode-electrolyte interface to develop long lifetime hybrid faradaic-capacitive electrodes based on LVNP-AC active materials.</p>","PeriodicalId":142,"journal":{"name":"ChemElectroChem","volume":"11 19","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202400117","citationCount":"0","resultStr":"{\"title\":\"On the Challenges to Develop Hybrid Faradaic-Capacitive Electrodes Incorporating a Sacrificial Salt for Lithium-ion Capacitors: The Case of Li3V1.95Ni0.05(PO4)3-AC-Li2C4O4\",\"authors\":\"Miguel Granados-Moreno,&nbsp;Maria Arnaiz,&nbsp;Emanuele Gucciardi,&nbsp;Nahom Enkubahri Asres,&nbsp;Eider Goikolea,&nbsp;Jon Ajuria\",\"doi\":\"10.1002/celc.202400117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The low capacity of activated carbon (AC) electrodes remains as one of the major limiting factors for the development of high energy density lithium-ion capacitors (LICs). Hybridization of capacitive AC electrodes by incorporating faradaic materials into the electrode formulation could be performed to enhance the capacity of the overall device. However, this strategy requires an accurate electrode design to maximize the performance. In this work, Li<sub>3</sub>V<sub>1.95</sub>Ni<sub>0.05</sub>(PO<sub>4</sub>)<sub>3</sub> (LVNP) was selected as faradaic material due to its compatibility with AC, showing high capacity, fast ionic diffusion, and relatively high conductivity. Various formulations and mass loadings have been studied to analyze the impact of incorporating LVNP into the positive electrode on the performance of the hybrid electrode. Moreover, for practical LIC applications, a sacrificial salt -dilithium squarate, Li<sub>2</sub>C<sub>4</sub>O<sub>4</sub>- was included in the hybrid electrode as a pre-lithiation additive, developing a ternary electrode. The sacrificial salt oxidized releasing lithium ions, while the electrochemical performance of the hybrid positive electrode remained almost unaltered. Finally, a cycle life test combined with a post-mortem analysis allows understanding the failure mechanisms of the electrode, suggesting the need of further improvements of the electrolyte and electrode-electrolyte interface to develop long lifetime hybrid faradaic-capacitive electrodes based on LVNP-AC active materials.</p>\",\"PeriodicalId\":142,\"journal\":{\"name\":\"ChemElectroChem\",\"volume\":\"11 19\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202400117\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemElectroChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/celc.202400117\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemElectroChem","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/celc.202400117","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

摘要

活性炭(AC)电极的低容量仍然是开发高能量密度锂离子电容器(LIC)的主要限制因素之一。通过在电极配方中加入远红外材料对电容式交流电极进行杂化,可以提高整个设备的容量。然而,这种策略需要精确的电极设计,以最大限度地提高性能。在这项工作中,Li3V1.95Ni0.05(PO4)3(LVNP)被选为远红外材料,因为它与交流电兼容,显示出高容量、快速离子扩散和相对较高的电导率。我们研究了各种配方和质量负载,以分析将 LVNP 加入正极对混合电极性能的影响。此外,针对 LIC 的实际应用,还在混合电极中加入了牺牲盐-方酸锂(Li2C4O4-)作为预硫化添加剂,从而开发出一种三元电极。牺牲盐氧化后释放出锂离子,而混合正极的电化学性能几乎保持不变。最后,通过循环寿命测试和死后分析,了解了电极的失效机制,表明需要进一步改进电解质和电极-电解质界面,以开发出基于 LVNP-AC 活性材料的长寿命混合法拉第电容电极。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On the Challenges to Develop Hybrid Faradaic-Capacitive Electrodes Incorporating a Sacrificial Salt for Lithium-ion Capacitors: The Case of Li3V1.95Ni0.05(PO4)3-AC-Li2C4O4

The low capacity of activated carbon (AC) electrodes remains as one of the major limiting factors for the development of high energy density lithium-ion capacitors (LICs). Hybridization of capacitive AC electrodes by incorporating faradaic materials into the electrode formulation could be performed to enhance the capacity of the overall device. However, this strategy requires an accurate electrode design to maximize the performance. In this work, Li3V1.95Ni0.05(PO4)3 (LVNP) was selected as faradaic material due to its compatibility with AC, showing high capacity, fast ionic diffusion, and relatively high conductivity. Various formulations and mass loadings have been studied to analyze the impact of incorporating LVNP into the positive electrode on the performance of the hybrid electrode. Moreover, for practical LIC applications, a sacrificial salt -dilithium squarate, Li2C4O4- was included in the hybrid electrode as a pre-lithiation additive, developing a ternary electrode. The sacrificial salt oxidized releasing lithium ions, while the electrochemical performance of the hybrid positive electrode remained almost unaltered. Finally, a cycle life test combined with a post-mortem analysis allows understanding the failure mechanisms of the electrode, suggesting the need of further improvements of the electrolyte and electrode-electrolyte interface to develop long lifetime hybrid faradaic-capacitive electrodes based on LVNP-AC active materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemElectroChem
ChemElectroChem ELECTROCHEMISTRY-
CiteScore
7.90
自引率
2.50%
发文量
515
审稿时长
1.2 months
期刊介绍: ChemElectroChem is aimed to become a top-ranking electrochemistry journal for primary research papers and critical secondary information from authors across the world. The journal covers the entire scope of pure and applied electrochemistry, the latter encompassing (among others) energy applications, electrochemistry at interfaces (including surfaces), photoelectrochemistry and bioelectrochemistry.
期刊最新文献
Front Cover: Electrocatalytic Performance and Kinetic Behavior of Anion-Intercalated Borate-Based NiFe LDH in Alkaline OER (ChemElectroChem 22/2024) Electrocatalytic Performance and Kinetic Behavior of Anion-Intercalated Borate-Based NiFe LDH in Alkaline OER Cover Feature: Cost-Effective Solutions for Lithium-Ion Battery Manufacturing: Comparative Analysis of Olefine and Rubber-Based Alternative Binders for High-Energy Ni-Rich NCM Cathodes (ChemElectroChem 21/2024) Front Cover: High-performance Porous Electrodes for Flow Batteries: Improvements of Specific Surface Areas and Reaction Kinetics (ChemElectroChem 21/2024) Lithium Doping Enhances the Aqueous Zinc Ion Storage Performance of V3O7 ⋅ H2O Nanorods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1