硬币电池中锂离子与阴极材料互溶的阻抗光谱学

IF 3.5 4区 化学 Q2 ELECTROCHEMISTRY ChemElectroChem Pub Date : 2024-09-06 DOI:10.1002/celc.202400390
Göktug Yesilbas, Daniel Grieve, David Rettmann, Kivanc Gülderen, Aliaksandr S. Bandarenka, Jeongsik Yun
{"title":"硬币电池中锂离子与阴极材料互溶的阻抗光谱学","authors":"Göktug Yesilbas,&nbsp;Daniel Grieve,&nbsp;David Rettmann,&nbsp;Kivanc Gülderen,&nbsp;Aliaksandr S. Bandarenka,&nbsp;Jeongsik Yun","doi":"10.1002/celc.202400390","DOIUrl":null,"url":null,"abstract":"<p>Understanding the internal reactions in Li-ion batteries is crucial to analyze them more accurately and improve their efficiency since they are involved in almost every aspect of everyday life. Electrochemical impedance spectroscopy is a valuable research technique to investigate such batteries, as it reveals sensitive properties and essential information about cell reaction mechanisms and kinetics. Physical understanding of the electrochemical process and system of a battery can be analyzed using equivalent electric circuits (EECs) with rational selection of electric circuit elements and their combination. However, impedance analysis of a battery is often conducted using oversimplified EEC models in practice due to the complexity and difficulty of the physics and mathematics of the modeling. This study proposes and verifies an EEC model that represents a three-stage mechanism for intercalation-type materials. For the systematic model study and verifications, we investigated cathode half cells using four different layered structured cathode materials, namely, LiCoO<sub>2</sub>, LiNi<sub>1/3</sub>Mn<sub>1/3</sub>Co<sub>1/3</sub>O<sub>2</sub>, LiNi<sub>0.9</sub>Mn<sub>0.05</sub>Co<sub>0.05</sub>O<sub>2</sub>, and Ni<sub>0.815</sub>Co<sub>0.15</sub>Al<sub>0.035</sub>O<sub>2</sub>. Parametric analysis of the impedance fittings for the four different cathode materials showed similar behavior depending on the states of charge. We also provided the complete set of parameters of the four systems: charge transfer resistance, double-layer capacitance, and solid-electrolyte interphase (SEI) resistance and capacitance. Lastly, we explain how different electrochemical processes, such as intercalation and alloying, can be analyzed and modeled in EEC models.</p>","PeriodicalId":142,"journal":{"name":"ChemElectroChem","volume":"11 19","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202400390","citationCount":"0","resultStr":"{\"title\":\"Impedance Spectroscopy of Lithium Intercalation into Cathode Materials in Coin Cells\",\"authors\":\"Göktug Yesilbas,&nbsp;Daniel Grieve,&nbsp;David Rettmann,&nbsp;Kivanc Gülderen,&nbsp;Aliaksandr S. Bandarenka,&nbsp;Jeongsik Yun\",\"doi\":\"10.1002/celc.202400390\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Understanding the internal reactions in Li-ion batteries is crucial to analyze them more accurately and improve their efficiency since they are involved in almost every aspect of everyday life. Electrochemical impedance spectroscopy is a valuable research technique to investigate such batteries, as it reveals sensitive properties and essential information about cell reaction mechanisms and kinetics. Physical understanding of the electrochemical process and system of a battery can be analyzed using equivalent electric circuits (EECs) with rational selection of electric circuit elements and their combination. However, impedance analysis of a battery is often conducted using oversimplified EEC models in practice due to the complexity and difficulty of the physics and mathematics of the modeling. This study proposes and verifies an EEC model that represents a three-stage mechanism for intercalation-type materials. For the systematic model study and verifications, we investigated cathode half cells using four different layered structured cathode materials, namely, LiCoO<sub>2</sub>, LiNi<sub>1/3</sub>Mn<sub>1/3</sub>Co<sub>1/3</sub>O<sub>2</sub>, LiNi<sub>0.9</sub>Mn<sub>0.05</sub>Co<sub>0.05</sub>O<sub>2</sub>, and Ni<sub>0.815</sub>Co<sub>0.15</sub>Al<sub>0.035</sub>O<sub>2</sub>. Parametric analysis of the impedance fittings for the four different cathode materials showed similar behavior depending on the states of charge. We also provided the complete set of parameters of the four systems: charge transfer resistance, double-layer capacitance, and solid-electrolyte interphase (SEI) resistance and capacitance. Lastly, we explain how different electrochemical processes, such as intercalation and alloying, can be analyzed and modeled in EEC models.</p>\",\"PeriodicalId\":142,\"journal\":{\"name\":\"ChemElectroChem\",\"volume\":\"11 19\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202400390\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemElectroChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/celc.202400390\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemElectroChem","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/celc.202400390","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

摘要

由于锂离子电池几乎涉及日常生活的方方面面,因此了解锂离子电池的内部反应对于更准确地分析锂离子电池和提高其效率至关重要。电化学阻抗光谱是研究此类电池的重要研究技术,因为它能揭示电池反应机制和动力学的敏感特性和基本信息。对电池电化学过程和系统的物理理解可通过合理选择电路元件及其组合,使用等效电路(EEC)进行分析。然而,由于物理和数学建模的复杂性和难度,电池的阻抗分析在实践中往往使用过于简化的 EEC 模型。本研究提出并验证了代表插层型材料三阶段机制的 EEC 模型。为了对模型进行系统研究和验证,我们使用四种不同层状结构的阴极材料(即钴酸锂、镍钴锰酸锂、镍钴锰酸锂和镍钴铝酸锂)对半电池进行了研究。对四种不同阴极材料的阻抗配件进行的参数分析表明,不同的电荷状态具有相似的行为。我们还提供了四个系统的全套参数:电荷转移电阻、双层电容以及固电解质相间(SEI)电阻和电容。最后,我们解释了如何在 EEC 模型中分析和模拟不同的电化学过程,如插层和合金化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Impedance Spectroscopy of Lithium Intercalation into Cathode Materials in Coin Cells

Understanding the internal reactions in Li-ion batteries is crucial to analyze them more accurately and improve their efficiency since they are involved in almost every aspect of everyday life. Electrochemical impedance spectroscopy is a valuable research technique to investigate such batteries, as it reveals sensitive properties and essential information about cell reaction mechanisms and kinetics. Physical understanding of the electrochemical process and system of a battery can be analyzed using equivalent electric circuits (EECs) with rational selection of electric circuit elements and their combination. However, impedance analysis of a battery is often conducted using oversimplified EEC models in practice due to the complexity and difficulty of the physics and mathematics of the modeling. This study proposes and verifies an EEC model that represents a three-stage mechanism for intercalation-type materials. For the systematic model study and verifications, we investigated cathode half cells using four different layered structured cathode materials, namely, LiCoO2, LiNi1/3Mn1/3Co1/3O2, LiNi0.9Mn0.05Co0.05O2, and Ni0.815Co0.15Al0.035O2. Parametric analysis of the impedance fittings for the four different cathode materials showed similar behavior depending on the states of charge. We also provided the complete set of parameters of the four systems: charge transfer resistance, double-layer capacitance, and solid-electrolyte interphase (SEI) resistance and capacitance. Lastly, we explain how different electrochemical processes, such as intercalation and alloying, can be analyzed and modeled in EEC models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemElectroChem
ChemElectroChem ELECTROCHEMISTRY-
CiteScore
7.90
自引率
2.50%
发文量
515
审稿时长
1.2 months
期刊介绍: ChemElectroChem is aimed to become a top-ranking electrochemistry journal for primary research papers and critical secondary information from authors across the world. The journal covers the entire scope of pure and applied electrochemistry, the latter encompassing (among others) energy applications, electrochemistry at interfaces (including surfaces), photoelectrochemistry and bioelectrochemistry.
期刊最新文献
Front Cover: Electrocatalytic Performance and Kinetic Behavior of Anion-Intercalated Borate-Based NiFe LDH in Alkaline OER (ChemElectroChem 22/2024) Electrocatalytic Performance and Kinetic Behavior of Anion-Intercalated Borate-Based NiFe LDH in Alkaline OER Cover Feature: Cost-Effective Solutions for Lithium-Ion Battery Manufacturing: Comparative Analysis of Olefine and Rubber-Based Alternative Binders for High-Energy Ni-Rich NCM Cathodes (ChemElectroChem 21/2024) Front Cover: High-performance Porous Electrodes for Flow Batteries: Improvements of Specific Surface Areas and Reaction Kinetics (ChemElectroChem 21/2024) Lithium Doping Enhances the Aqueous Zinc Ion Storage Performance of V3O7 ⋅ H2O Nanorods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1