基于深度学习的二维超声心动图运动估计相位解决方案

IF 2.4 4区 医学 Q3 ENGINEERING, BIOMEDICAL Physical and Engineering Sciences in Medicine Pub Date : 2024-09-12 DOI:10.1007/s13246-024-01481-2
Sahar Khoubani, Mohammad Hassan Moradi
{"title":"基于深度学习的二维超声心动图运动估计相位解决方案","authors":"Sahar Khoubani, Mohammad Hassan Moradi","doi":"10.1007/s13246-024-01481-2","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we propose a new deep learning method based on Quaternion Wavelet Transform (QWT) phases of 2D echocardiographic sequences to estimate the motion and strain of myocardium. The proposed method considers intensity and phases gained from QWT as the inputs of customized PWC-Net structure, a high-performance deep network in motion estimation. We have trained and tested our proposed method performance using two realistic simulated B-mode echocardiographic sequences. We have evaluated our proposed method in terms of both geometrical and clinical indices. Our method achieved an average endpoint error of 0.06 mm per frame and 0.59 mm between End Diastole and End Systole on a simulated dataset. Correlation analysis between ground truth and the computed strain shows a correlation coefficient of 0.89, much better than the most efficient methods in the state-of-the-art 2D echocardiography motion estimation. The results show the superiority of our proposed method in both geometrical and clinical indices.</p>","PeriodicalId":48490,"journal":{"name":"Physical and Engineering Sciences in Medicine","volume":"34 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A deep learning phase-based solution in 2D echocardiography motion estimation\",\"authors\":\"Sahar Khoubani, Mohammad Hassan Moradi\",\"doi\":\"10.1007/s13246-024-01481-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we propose a new deep learning method based on Quaternion Wavelet Transform (QWT) phases of 2D echocardiographic sequences to estimate the motion and strain of myocardium. The proposed method considers intensity and phases gained from QWT as the inputs of customized PWC-Net structure, a high-performance deep network in motion estimation. We have trained and tested our proposed method performance using two realistic simulated B-mode echocardiographic sequences. We have evaluated our proposed method in terms of both geometrical and clinical indices. Our method achieved an average endpoint error of 0.06 mm per frame and 0.59 mm between End Diastole and End Systole on a simulated dataset. Correlation analysis between ground truth and the computed strain shows a correlation coefficient of 0.89, much better than the most efficient methods in the state-of-the-art 2D echocardiography motion estimation. The results show the superiority of our proposed method in both geometrical and clinical indices.</p>\",\"PeriodicalId\":48490,\"journal\":{\"name\":\"Physical and Engineering Sciences in Medicine\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical and Engineering Sciences in Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s13246-024-01481-2\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical and Engineering Sciences in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13246-024-01481-2","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于二维超声心动图序列的四元数小波变换(QWT)相位的全新深度学习方法,用于估计心肌的运动和应变。该方法将从 QWT 中获得的强度和相位作为定制的 PWC-Net 结构的输入,这是一种用于运动估计的高性能深度网络。我们使用两个真实的模拟 B 型超声心动图序列训练和测试了我们提出的方法的性能。我们从几何和临床指标两方面对所提出的方法进行了评估。在模拟数据集上,我们的方法每帧的平均终点误差为 0.06 毫米,舒张末和收缩末之间的误差为 0.59 毫米。地面实况与计算应变之间的相关性分析表明,两者之间的相关系数为 0.89,远远优于最先进的二维超声心动图运动估算中最有效的方法。结果表明,我们提出的方法在几何和临床指标方面都具有优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A deep learning phase-based solution in 2D echocardiography motion estimation

In this paper, we propose a new deep learning method based on Quaternion Wavelet Transform (QWT) phases of 2D echocardiographic sequences to estimate the motion and strain of myocardium. The proposed method considers intensity and phases gained from QWT as the inputs of customized PWC-Net structure, a high-performance deep network in motion estimation. We have trained and tested our proposed method performance using two realistic simulated B-mode echocardiographic sequences. We have evaluated our proposed method in terms of both geometrical and clinical indices. Our method achieved an average endpoint error of 0.06 mm per frame and 0.59 mm between End Diastole and End Systole on a simulated dataset. Correlation analysis between ground truth and the computed strain shows a correlation coefficient of 0.89, much better than the most efficient methods in the state-of-the-art 2D echocardiography motion estimation. The results show the superiority of our proposed method in both geometrical and clinical indices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.40
自引率
4.50%
发文量
110
期刊最新文献
Autoencoder based data clustering for identifying anomalous repetitive hand movements, and behavioral transition patterns in children. Guidance on selecting and evaluating AI auto-segmentation systems in clinical radiotherapy: insights from a six-vendor analysis. Evaluating the prognostic value of radiomics and clinical features in metastatic prostate cancer using [68Ga]Ga-PSMA-11 PET/CT. In-silico evaluation of the effect of set-up errors on dose delivery during mouse irradiations with a Cs-137 cell irradiator-based collimator system. Use of a virtual phantom to assess the capability of a treatment planning system to perform magnetic resonance image distortion correction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1