通过结构化 Lasso 在凸非参数最小二乘法中选择变量:瑞典电力市场的应用

Zhiqiang Liao
{"title":"通过结构化 Lasso 在凸非参数最小二乘法中选择变量:瑞典电力市场的应用","authors":"Zhiqiang Liao","doi":"arxiv-2409.01911","DOIUrl":null,"url":null,"abstract":"We study the problem of variable selection in convex nonparametric least\nsquares (CNLS). Whereas the least absolute shrinkage and selection operator\n(Lasso) is a popular technique for least squares, its variable selection\nperformance is unknown in CNLS problems. In this work, we investigate the\nperformance of the Lasso CNLS estimator and find out it is usually unable to\nselect variables efficiently. Exploiting the unique structure of the\nsubgradients in CNLS, we develop a structured Lasso by combining $\\ell_1$-norm\nand $\\ell_{\\infty}$-norm. To improve its predictive performance, we propose a\nrelaxed version of the structured Lasso where we can control the two\neffects--variable selection and model shrinkage--using an additional tuning\nparameter. A Monte Carlo study is implemented to verify the finite sample\nperformances of the proposed approaches. In the application of Swedish\nelectricity distribution networks, when the regression model is assumed to be\nsemi-nonparametric, our methods are extended to the doubly penalized CNLS\nestimators. The results from the simulation and application confirm that the\nproposed structured Lasso performs favorably, generally leading to sparser and\nmore accurate predictive models, relative to the other variable selection\nmethods in the literature.","PeriodicalId":501293,"journal":{"name":"arXiv - ECON - Econometrics","volume":"141 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Variable selection in convex nonparametric least squares via structured Lasso: An application to the Swedish electricity market\",\"authors\":\"Zhiqiang Liao\",\"doi\":\"arxiv-2409.01911\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the problem of variable selection in convex nonparametric least\\nsquares (CNLS). Whereas the least absolute shrinkage and selection operator\\n(Lasso) is a popular technique for least squares, its variable selection\\nperformance is unknown in CNLS problems. In this work, we investigate the\\nperformance of the Lasso CNLS estimator and find out it is usually unable to\\nselect variables efficiently. Exploiting the unique structure of the\\nsubgradients in CNLS, we develop a structured Lasso by combining $\\\\ell_1$-norm\\nand $\\\\ell_{\\\\infty}$-norm. To improve its predictive performance, we propose a\\nrelaxed version of the structured Lasso where we can control the two\\neffects--variable selection and model shrinkage--using an additional tuning\\nparameter. A Monte Carlo study is implemented to verify the finite sample\\nperformances of the proposed approaches. In the application of Swedish\\nelectricity distribution networks, when the regression model is assumed to be\\nsemi-nonparametric, our methods are extended to the doubly penalized CNLS\\nestimators. The results from the simulation and application confirm that the\\nproposed structured Lasso performs favorably, generally leading to sparser and\\nmore accurate predictive models, relative to the other variable selection\\nmethods in the literature.\",\"PeriodicalId\":501293,\"journal\":{\"name\":\"arXiv - ECON - Econometrics\",\"volume\":\"141 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - ECON - Econometrics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.01911\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - ECON - Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.01911","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了凸非参数最小二乘法(CNLS)中的变量选择问题。虽然最小绝对收缩和选择算子(Lasso)是一种常用的最小二乘法技术,但它在 CNLS 问题中的变量选择性能尚不清楚。在这项工作中,我们研究了 Lasso CNLS 估计器的性能,发现它通常无法有效地选择变量。利用 CNLS 中子梯度的独特结构,我们结合 $\ell_1$-norm 和 $\ell_{\infty}$-norm 开发了一种结构化 Lasso。为了提高结构化拉索的预测性能,我们提出了结构化拉索的松弛版本,在这个版本中,我们可以通过额外的调整参数来控制变量选择和模型收缩这两种效应。通过蒙特卡罗研究验证了所提方法的有限样本性能。在瑞典配电网络的应用中,当假设回归模型为半非参数时,我们的方法扩展到了双重惩罚 CNLS 估计器。仿真和应用结果证实,与文献中的其他变量选择方法相比,所提出的结构化 Lasso 方法性能良好,通常能得到更稀疏、更准确的预测模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Variable selection in convex nonparametric least squares via structured Lasso: An application to the Swedish electricity market
We study the problem of variable selection in convex nonparametric least squares (CNLS). Whereas the least absolute shrinkage and selection operator (Lasso) is a popular technique for least squares, its variable selection performance is unknown in CNLS problems. In this work, we investigate the performance of the Lasso CNLS estimator and find out it is usually unable to select variables efficiently. Exploiting the unique structure of the subgradients in CNLS, we develop a structured Lasso by combining $\ell_1$-norm and $\ell_{\infty}$-norm. To improve its predictive performance, we propose a relaxed version of the structured Lasso where we can control the two effects--variable selection and model shrinkage--using an additional tuning parameter. A Monte Carlo study is implemented to verify the finite sample performances of the proposed approaches. In the application of Swedish electricity distribution networks, when the regression model is assumed to be semi-nonparametric, our methods are extended to the doubly penalized CNLS estimators. The results from the simulation and application confirm that the proposed structured Lasso performs favorably, generally leading to sparser and more accurate predictive models, relative to the other variable selection methods in the literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Simple robust two-stage estimation and inference for generalized impulse responses and multi-horizon causality GPT takes the SAT: Tracing changes in Test Difficulty and Math Performance of Students A Simple and Adaptive Confidence Interval when Nuisance Parameters Satisfy an Inequality Why you should also use OLS estimation of tail exponents On LASSO Inference for High Dimensional Predictive Regression
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1