误测高维控制变量治疗效果的双重/偏差 CoCoLASSO

Geonwoo Kim, Suyong Song
{"title":"误测高维控制变量治疗效果的双重/偏差 CoCoLASSO","authors":"Geonwoo Kim, Suyong Song","doi":"arxiv-2408.14671","DOIUrl":null,"url":null,"abstract":"We develop an estimator for treatment effects in high-dimensional settings\nwith additive measurement error, a prevalent challenge in modern econometrics.\nWe introduce the Double/Debiased Convex Conditioned LASSO (Double/Debiased\nCoCoLASSO), which extends the double/debiased machine learning framework to\naccommodate mismeasured covariates. Our principal contributions are threefold.\n(1) We construct a Neyman-orthogonal score function that remains valid under\nmeasurement error, incorporating a bias correction term to account for\nerror-induced correlations. (2) We propose a method of moments estimator for\nthe measurement error variance, enabling implementation without prior knowledge\nof the error covariance structure. (3) We establish the $\\sqrt{N}$-consistency\nand asymptotic normality of our estimator under general conditions, allowing\nfor both the number of covariates and the magnitude of measurement error to\nincrease with the sample size. Our theoretical results demonstrate the\nestimator's efficiency within the class of regularized high-dimensional\nestimators accounting for measurement error. Monte Carlo simulations\ncorroborate our asymptotic theory and illustrate the estimator's robust\nperformance across various levels of measurement error. Notably, our\ncovariance-oblivious approach nearly matches the efficiency of methods that\nassume known error variance.","PeriodicalId":501293,"journal":{"name":"arXiv - ECON - Econometrics","volume":"67 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Double/Debiased CoCoLASSO of Treatment Effects with Mismeasured High-Dimensional Control Variables\",\"authors\":\"Geonwoo Kim, Suyong Song\",\"doi\":\"arxiv-2408.14671\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop an estimator for treatment effects in high-dimensional settings\\nwith additive measurement error, a prevalent challenge in modern econometrics.\\nWe introduce the Double/Debiased Convex Conditioned LASSO (Double/Debiased\\nCoCoLASSO), which extends the double/debiased machine learning framework to\\naccommodate mismeasured covariates. Our principal contributions are threefold.\\n(1) We construct a Neyman-orthogonal score function that remains valid under\\nmeasurement error, incorporating a bias correction term to account for\\nerror-induced correlations. (2) We propose a method of moments estimator for\\nthe measurement error variance, enabling implementation without prior knowledge\\nof the error covariance structure. (3) We establish the $\\\\sqrt{N}$-consistency\\nand asymptotic normality of our estimator under general conditions, allowing\\nfor both the number of covariates and the magnitude of measurement error to\\nincrease with the sample size. Our theoretical results demonstrate the\\nestimator's efficiency within the class of regularized high-dimensional\\nestimators accounting for measurement error. Monte Carlo simulations\\ncorroborate our asymptotic theory and illustrate the estimator's robust\\nperformance across various levels of measurement error. Notably, our\\ncovariance-oblivious approach nearly matches the efficiency of methods that\\nassume known error variance.\",\"PeriodicalId\":501293,\"journal\":{\"name\":\"arXiv - ECON - Econometrics\",\"volume\":\"67 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - ECON - Econometrics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.14671\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - ECON - Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.14671","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了双/去偏凸条件 LASSO(Double/DebiasedCoCoLASSO),它扩展了双/去偏机器学习框架,以适应测量误差协变量。我们的主要贡献有三点:(1) 我们构建了一个在测量误差条件下仍然有效的奈曼正交得分函数,并加入了一个偏差修正项,以考虑误差引起的相关性。(2) 我们提出了测量误差方差的矩估计方法,无需事先了解误差协方差结构即可实施。(3) 在一般条件下,允许协变量的数量和测量误差的大小随着样本量的增加而增加,我们建立了估计器的($\sqrt{N}$)一致性和渐近正态性。我们的理论结果证明了该估计器在考虑测量误差的正则化高维估计器类别中的效率。蒙特卡罗模拟证实了我们的渐近理论,并说明了估计器在各种测量误差水平下的稳健表现。值得注意的是,我们的不考虑方差的方法几乎可以与假定已知误差方差的方法的效率相媲美。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Double/Debiased CoCoLASSO of Treatment Effects with Mismeasured High-Dimensional Control Variables
We develop an estimator for treatment effects in high-dimensional settings with additive measurement error, a prevalent challenge in modern econometrics. We introduce the Double/Debiased Convex Conditioned LASSO (Double/Debiased CoCoLASSO), which extends the double/debiased machine learning framework to accommodate mismeasured covariates. Our principal contributions are threefold. (1) We construct a Neyman-orthogonal score function that remains valid under measurement error, incorporating a bias correction term to account for error-induced correlations. (2) We propose a method of moments estimator for the measurement error variance, enabling implementation without prior knowledge of the error covariance structure. (3) We establish the $\sqrt{N}$-consistency and asymptotic normality of our estimator under general conditions, allowing for both the number of covariates and the magnitude of measurement error to increase with the sample size. Our theoretical results demonstrate the estimator's efficiency within the class of regularized high-dimensional estimators accounting for measurement error. Monte Carlo simulations corroborate our asymptotic theory and illustrate the estimator's robust performance across various levels of measurement error. Notably, our covariance-oblivious approach nearly matches the efficiency of methods that assume known error variance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Simple robust two-stage estimation and inference for generalized impulse responses and multi-horizon causality GPT takes the SAT: Tracing changes in Test Difficulty and Math Performance of Students A Simple and Adaptive Confidence Interval when Nuisance Parameters Satisfy an Inequality Why you should also use OLS estimation of tail exponents On LASSO Inference for High Dimensional Predictive Regression
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1