非同步波动性的横截面依赖性

Ilze Kalnina, Kokouvi Tewou
{"title":"非同步波动性的横截面依赖性","authors":"Ilze Kalnina, Kokouvi Tewou","doi":"arxiv-2408.13437","DOIUrl":null,"url":null,"abstract":"This paper introduces an econometric framework for analyzing cross-sectional\ndependence in the idiosyncratic volatilities of assets using high frequency\ndata. We first consider the estimation of standard measures of dependence in\nthe idiosyncratic volatilities such as covariances and correlations. Naive\nestimators of these measures are biased due to the use of the error-laden\nestimates of idiosyncratic volatilities. We provide bias-corrected estimators\nand the relevant asymptotic theory. Next, we introduce an idiosyncratic\nvolatility factor model, in which we decompose the variation in idiosyncratic\nvolatilities into two parts: the variation related to the systematic factors\nsuch as the market volatility, and the residual variation. Again, naive\nestimators of the decomposition are biased, and we provide bias-corrected\nestimators. We also provide the asymptotic theory that allows us to test\nwhether the residual (non-systematic) components of the idiosyncratic\nvolatilities exhibit cross-sectional dependence. We apply our methodology to\nthe S&P 100 index constituents, and document strong cross-sectional dependence\nin their idiosyncratic volatilities. We consider two different sets of\nidiosyncratic volatility factors, and find that neither can fully account for\nthe cross-sectional dependence in idiosyncratic volatilities. For each model,\nwe map out the network of dependencies in residual (non-systematic)\nidiosyncratic volatilities across all stocks.","PeriodicalId":501293,"journal":{"name":"arXiv - ECON - Econometrics","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cross-sectional Dependence in Idiosyncratic Volatility\",\"authors\":\"Ilze Kalnina, Kokouvi Tewou\",\"doi\":\"arxiv-2408.13437\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces an econometric framework for analyzing cross-sectional\\ndependence in the idiosyncratic volatilities of assets using high frequency\\ndata. We first consider the estimation of standard measures of dependence in\\nthe idiosyncratic volatilities such as covariances and correlations. Naive\\nestimators of these measures are biased due to the use of the error-laden\\nestimates of idiosyncratic volatilities. We provide bias-corrected estimators\\nand the relevant asymptotic theory. Next, we introduce an idiosyncratic\\nvolatility factor model, in which we decompose the variation in idiosyncratic\\nvolatilities into two parts: the variation related to the systematic factors\\nsuch as the market volatility, and the residual variation. Again, naive\\nestimators of the decomposition are biased, and we provide bias-corrected\\nestimators. We also provide the asymptotic theory that allows us to test\\nwhether the residual (non-systematic) components of the idiosyncratic\\nvolatilities exhibit cross-sectional dependence. We apply our methodology to\\nthe S&P 100 index constituents, and document strong cross-sectional dependence\\nin their idiosyncratic volatilities. We consider two different sets of\\nidiosyncratic volatility factors, and find that neither can fully account for\\nthe cross-sectional dependence in idiosyncratic volatilities. For each model,\\nwe map out the network of dependencies in residual (non-systematic)\\nidiosyncratic volatilities across all stocks.\",\"PeriodicalId\":501293,\"journal\":{\"name\":\"arXiv - ECON - Econometrics\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - ECON - Econometrics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.13437\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - ECON - Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.13437","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种计量经济学框架,用于利用高频数据分析资产特异波动率的跨期依赖性。我们首先考虑了对特异波动率依赖性的标准度量的估计,如协方差和相关性。由于使用了带有误差的特异波动率估计值,这些指标的天真估计值是有偏差的。我们提供了偏差校正估计值和相关的渐近理论。接下来,我们引入一个特质波动率因子模型,将特质波动率的变化分解为两部分:与市场波动率等系统性因子相关的变化和残差变化。同样,分解的天真估计值是有偏差的,我们提供了偏差校正估计值。我们还提供了渐近理论,使我们能够检验特异性波动率的残差(非系统性)成分是否表现出横截面依赖性。我们将我们的方法应用于标准普尔 100 指数成分股,并记录了其特异性波动率中强烈的横截面依赖性。我们考虑了两组不同的特异波动率因子,发现这两组因子都不能完全解释特异波动率的横截面依赖性。对于每种模型,我们都绘制出了所有股票的残差(非系统性)特异波动率的依赖网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cross-sectional Dependence in Idiosyncratic Volatility
This paper introduces an econometric framework for analyzing cross-sectional dependence in the idiosyncratic volatilities of assets using high frequency data. We first consider the estimation of standard measures of dependence in the idiosyncratic volatilities such as covariances and correlations. Naive estimators of these measures are biased due to the use of the error-laden estimates of idiosyncratic volatilities. We provide bias-corrected estimators and the relevant asymptotic theory. Next, we introduce an idiosyncratic volatility factor model, in which we decompose the variation in idiosyncratic volatilities into two parts: the variation related to the systematic factors such as the market volatility, and the residual variation. Again, naive estimators of the decomposition are biased, and we provide bias-corrected estimators. We also provide the asymptotic theory that allows us to test whether the residual (non-systematic) components of the idiosyncratic volatilities exhibit cross-sectional dependence. We apply our methodology to the S&P 100 index constituents, and document strong cross-sectional dependence in their idiosyncratic volatilities. We consider two different sets of idiosyncratic volatility factors, and find that neither can fully account for the cross-sectional dependence in idiosyncratic volatilities. For each model, we map out the network of dependencies in residual (non-systematic) idiosyncratic volatilities across all stocks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Simple robust two-stage estimation and inference for generalized impulse responses and multi-horizon causality GPT takes the SAT: Tracing changes in Test Difficulty and Math Performance of Students A Simple and Adaptive Confidence Interval when Nuisance Parameters Satisfy an Inequality Why you should also use OLS estimation of tail exponents On LASSO Inference for High Dimensional Predictive Regression
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1