近似因子模型中群体主成分的 L2 收敛性

Philipp Gersing
{"title":"近似因子模型中群体主成分的 L2 收敛性","authors":"Philipp Gersing","doi":"arxiv-2408.11676","DOIUrl":null,"url":null,"abstract":"We prove that under the condition that the eigenvalues are asymptotically\nwell separated and stable, the normalised principal components of a r-static\nfactor sequence converge in mean square. Consequently, we have a generic\ninterpretation of the principal components estimator as the normalised\nprincipal components of the statically common space. We illustrate why this can\nbe useful for the interpretation of the PC-estimated factors, performing an\nasymptotic theory without rotation matrices and avoiding singularity issues in\nfactor augmented regressions.","PeriodicalId":501293,"journal":{"name":"arXiv - ECON - Econometrics","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"L2-Convergence of the Population Principal Components in the Approximate Factor Model\",\"authors\":\"Philipp Gersing\",\"doi\":\"arxiv-2408.11676\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that under the condition that the eigenvalues are asymptotically\\nwell separated and stable, the normalised principal components of a r-static\\nfactor sequence converge in mean square. Consequently, we have a generic\\ninterpretation of the principal components estimator as the normalised\\nprincipal components of the statically common space. We illustrate why this can\\nbe useful for the interpretation of the PC-estimated factors, performing an\\nasymptotic theory without rotation matrices and avoiding singularity issues in\\nfactor augmented regressions.\",\"PeriodicalId\":501293,\"journal\":{\"name\":\"arXiv - ECON - Econometrics\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - ECON - Econometrics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.11676\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - ECON - Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.11676","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明,在特征值渐近分离且稳定的条件下,r-静态因子序列的归一化主成分均方收敛。因此,我们可以将主成分估计器通用地解释为静态公共空间的归一化主成分。我们将说明为什么这有助于解释 PC 估计因子,在没有旋转矩阵的情况下执行渐近理论,并避免因子增强回归的奇异性问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
L2-Convergence of the Population Principal Components in the Approximate Factor Model
We prove that under the condition that the eigenvalues are asymptotically well separated and stable, the normalised principal components of a r-static factor sequence converge in mean square. Consequently, we have a generic interpretation of the principal components estimator as the normalised principal components of the statically common space. We illustrate why this can be useful for the interpretation of the PC-estimated factors, performing an asymptotic theory without rotation matrices and avoiding singularity issues in factor augmented regressions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Simple robust two-stage estimation and inference for generalized impulse responses and multi-horizon causality GPT takes the SAT: Tracing changes in Test Difficulty and Math Performance of Students A Simple and Adaptive Confidence Interval when Nuisance Parameters Satisfy an Inequality Why you should also use OLS estimation of tail exponents On LASSO Inference for High Dimensional Predictive Regression
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1