利用许多弱工具和异质性进行推断

Luther Yap
{"title":"利用许多弱工具和异质性进行推断","authors":"Luther Yap","doi":"arxiv-2408.11193","DOIUrl":null,"url":null,"abstract":"This paper considers inference in a linear instrumental variable regression\nmodel with many potentially weak instruments and treatment effect\nheterogeneity. I show that existing tests can be arbitrarily oversized in this\nsetup. Then, I develop a valid procedure that is robust to weak instrument\nasymptotics and heterogeneous treatment effects. The procedure targets a JIVE\nestimand, calculates an LM statistic, and compares it with critical values from\na normal distribution. To establish this procedure's validity, this paper shows\nthat the LM statistic is asymptotically normal and a leave-three-out variance\nestimator is unbiased and consistent. The power of the LM test is also close to\na power envelope in an empirical application.","PeriodicalId":501293,"journal":{"name":"arXiv - ECON - Econometrics","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inference with Many Weak Instruments and Heterogeneity\",\"authors\":\"Luther Yap\",\"doi\":\"arxiv-2408.11193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper considers inference in a linear instrumental variable regression\\nmodel with many potentially weak instruments and treatment effect\\nheterogeneity. I show that existing tests can be arbitrarily oversized in this\\nsetup. Then, I develop a valid procedure that is robust to weak instrument\\nasymptotics and heterogeneous treatment effects. The procedure targets a JIVE\\nestimand, calculates an LM statistic, and compares it with critical values from\\na normal distribution. To establish this procedure's validity, this paper shows\\nthat the LM statistic is asymptotically normal and a leave-three-out variance\\nestimator is unbiased and consistent. The power of the LM test is also close to\\na power envelope in an empirical application.\",\"PeriodicalId\":501293,\"journal\":{\"name\":\"arXiv - ECON - Econometrics\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - ECON - Econometrics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.11193\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - ECON - Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.11193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了线性工具变量回归模型中的推断问题,该模型具有许多潜在的弱工具和治疗效果异质性。我证明了现有的检验在这种情况下可以任意过大。然后,我开发了一种有效的程序,它对弱工具隐约性和异质性治疗效果具有稳健性。该程序以 JIVE 估计值为目标,计算 LM 统计量,并将其与正态分布的临界值进行比较。为了确定该程序的有效性,本文证明了 LM 统计量是渐近正态的,并且一个留出三个方差的方差估计器是无偏和一致的。在经验应用中,LM 检验的功率也接近功率包络线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Inference with Many Weak Instruments and Heterogeneity
This paper considers inference in a linear instrumental variable regression model with many potentially weak instruments and treatment effect heterogeneity. I show that existing tests can be arbitrarily oversized in this setup. Then, I develop a valid procedure that is robust to weak instrument asymptotics and heterogeneous treatment effects. The procedure targets a JIVE estimand, calculates an LM statistic, and compares it with critical values from a normal distribution. To establish this procedure's validity, this paper shows that the LM statistic is asymptotically normal and a leave-three-out variance estimator is unbiased and consistent. The power of the LM test is also close to a power envelope in an empirical application.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Simple robust two-stage estimation and inference for generalized impulse responses and multi-horizon causality GPT takes the SAT: Tracing changes in Test Difficulty and Math Performance of Students A Simple and Adaptive Confidence Interval when Nuisance Parameters Satisfy an Inequality Why you should also use OLS estimation of tail exponents On LASSO Inference for High Dimensional Predictive Regression
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1