用于弱聚类和少聚类工具变量量值回归的梯度野生引导法

Wenjie Wang, Yichong Zhang
{"title":"用于弱聚类和少聚类工具变量量值回归的梯度野生引导法","authors":"Wenjie Wang, Yichong Zhang","doi":"arxiv-2408.10686","DOIUrl":null,"url":null,"abstract":"We study the gradient wild bootstrap-based inference for instrumental\nvariable quantile regressions in the framework of a small number of large\nclusters in which the number of clusters is viewed as fixed, and the number of\nobservations for each cluster diverges to infinity. For the Wald inference, we\nshow that our wild bootstrap Wald test, with or without studentization using\nthe cluster-robust covariance estimator (CRVE), controls size asymptotically up\nto a small error as long as the parameter of endogenous variable is strongly\nidentified in at least one of the clusters. We further show that the wild\nbootstrap Wald test with CRVE studentization is more powerful for distant local\nalternatives than that without. Last, we develop a wild bootstrap\nAnderson-Rubin (AR) test for the weak-identification-robust inference. We show\nit controls size asymptotically up to a small error, even under weak or partial\nidentification for all clusters. We illustrate the good finite-sample\nperformance of the new inference methods using simulations and provide an\nempirical application to a well-known dataset about US local labor markets.","PeriodicalId":501293,"journal":{"name":"arXiv - ECON - Econometrics","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gradient Wild Bootstrap for Instrumental Variable Quantile Regressions with Weak and Few Clusters\",\"authors\":\"Wenjie Wang, Yichong Zhang\",\"doi\":\"arxiv-2408.10686\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the gradient wild bootstrap-based inference for instrumental\\nvariable quantile regressions in the framework of a small number of large\\nclusters in which the number of clusters is viewed as fixed, and the number of\\nobservations for each cluster diverges to infinity. For the Wald inference, we\\nshow that our wild bootstrap Wald test, with or without studentization using\\nthe cluster-robust covariance estimator (CRVE), controls size asymptotically up\\nto a small error as long as the parameter of endogenous variable is strongly\\nidentified in at least one of the clusters. We further show that the wild\\nbootstrap Wald test with CRVE studentization is more powerful for distant local\\nalternatives than that without. Last, we develop a wild bootstrap\\nAnderson-Rubin (AR) test for the weak-identification-robust inference. We show\\nit controls size asymptotically up to a small error, even under weak or partial\\nidentification for all clusters. We illustrate the good finite-sample\\nperformance of the new inference methods using simulations and provide an\\nempirical application to a well-known dataset about US local labor markets.\",\"PeriodicalId\":501293,\"journal\":{\"name\":\"arXiv - ECON - Econometrics\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - ECON - Econometrics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.10686\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - ECON - Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.10686","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了基于梯度野生引导的工具变量量化回归推断,该推断是在少数大型聚类的框架下进行的,其中聚类的数量被视为固定的,而每个聚类的观察数会发散到无穷大。对于 Wald 推理,我们表明,只要内生变量的参数至少在其中一个聚类中被强识别,我们的野生自举 Wald 检验,无论是否使用聚类稳健协方差估计器(CRVE)进行学生化,都能在很小的误差范围内渐进地控制规模。我们进一步证明,与不使用 CRVE 的情况相比,使用 CRVE 的野生自回归 Wald 检验对遥远的本地替代变量更有效。最后,我们开发了一种用于弱识别稳健推断的野生自举安德森-鲁宾(AR)检验。我们证明,即使在所有聚类的弱识别或部分识别情况下,它也能控制大小,直至误差很小。我们通过模拟说明了新推断方法良好的有限样本性能,并提供了一个关于美国地方劳动力市场的著名数据集的经验应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Gradient Wild Bootstrap for Instrumental Variable Quantile Regressions with Weak and Few Clusters
We study the gradient wild bootstrap-based inference for instrumental variable quantile regressions in the framework of a small number of large clusters in which the number of clusters is viewed as fixed, and the number of observations for each cluster diverges to infinity. For the Wald inference, we show that our wild bootstrap Wald test, with or without studentization using the cluster-robust covariance estimator (CRVE), controls size asymptotically up to a small error as long as the parameter of endogenous variable is strongly identified in at least one of the clusters. We further show that the wild bootstrap Wald test with CRVE studentization is more powerful for distant local alternatives than that without. Last, we develop a wild bootstrap Anderson-Rubin (AR) test for the weak-identification-robust inference. We show it controls size asymptotically up to a small error, even under weak or partial identification for all clusters. We illustrate the good finite-sample performance of the new inference methods using simulations and provide an empirical application to a well-known dataset about US local labor markets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Simple robust two-stage estimation and inference for generalized impulse responses and multi-horizon causality GPT takes the SAT: Tracing changes in Test Difficulty and Math Performance of Students A Simple and Adaptive Confidence Interval when Nuisance Parameters Satisfy an Inequality Why you should also use OLS estimation of tail exponents On LASSO Inference for High Dimensional Predictive Regression
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1