{"title":"从电势角度模拟表面声波驱动的电子传输","authors":"Jikhyeon Ham, Sehun Kim, Seok-Kyun Son","doi":"10.1007/s40042-024-01171-y","DOIUrl":null,"url":null,"abstract":"<div><p>Surface acoustic waves (SAWs) have been utilized as a platform for single-electron transistors. When superposed with the split-gate potential, propagating SAWs create moving potential wells. We demonstrate the total potential landscape using the Laplace equation and apply the one-dimensional time-independent Schrödinger equation to determine the conditions necessary for single-electron transport. Our findings reveal that the ratio between the SAW amplitude and the split-gate voltage varies with the SAW wavelength and the absolute value of the gate voltage. We propose essential conditions for single-electron transport based on the ratios derived from our calculations, which can be applied to other material systems.</p></div>","PeriodicalId":677,"journal":{"name":"Journal of the Korean Physical Society","volume":"85 9","pages":"746 - 750"},"PeriodicalIF":0.8000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A simulation for surface acoustic waves driven electron transport in perspective of electrical potential\",\"authors\":\"Jikhyeon Ham, Sehun Kim, Seok-Kyun Son\",\"doi\":\"10.1007/s40042-024-01171-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Surface acoustic waves (SAWs) have been utilized as a platform for single-electron transistors. When superposed with the split-gate potential, propagating SAWs create moving potential wells. We demonstrate the total potential landscape using the Laplace equation and apply the one-dimensional time-independent Schrödinger equation to determine the conditions necessary for single-electron transport. Our findings reveal that the ratio between the SAW amplitude and the split-gate voltage varies with the SAW wavelength and the absolute value of the gate voltage. We propose essential conditions for single-electron transport based on the ratios derived from our calculations, which can be applied to other material systems.</p></div>\",\"PeriodicalId\":677,\"journal\":{\"name\":\"Journal of the Korean Physical Society\",\"volume\":\"85 9\",\"pages\":\"746 - 750\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Korean Physical Society\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40042-024-01171-y\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korean Physical Society","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s40042-024-01171-y","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
A simulation for surface acoustic waves driven electron transport in perspective of electrical potential
Surface acoustic waves (SAWs) have been utilized as a platform for single-electron transistors. When superposed with the split-gate potential, propagating SAWs create moving potential wells. We demonstrate the total potential landscape using the Laplace equation and apply the one-dimensional time-independent Schrödinger equation to determine the conditions necessary for single-electron transport. Our findings reveal that the ratio between the SAW amplitude and the split-gate voltage varies with the SAW wavelength and the absolute value of the gate voltage. We propose essential conditions for single-electron transport based on the ratios derived from our calculations, which can be applied to other material systems.
期刊介绍:
The Journal of the Korean Physical Society (JKPS) covers all fields of physics spanning from statistical physics and condensed matter physics to particle physics. The manuscript to be published in JKPS is required to hold the originality, significance, and recent completeness. The journal is composed of Full paper, Letters, and Brief sections. In addition, featured articles with outstanding results are selected by the Editorial board and introduced in the online version. For emphasis on aspect of international journal, several world-distinguished researchers join the Editorial board. High quality of papers may be express-published when it is recommended or requested.