Sangho Yoon, Taeho Kim, Su-Beom Song, Kenji Watanabe, Takashi Taniguchi, Jonghwan Kim
{"title":"三层磷烯 pn 二极管中的电致发光和光电流生成","authors":"Sangho Yoon, Taeho Kim, Su-Beom Song, Kenji Watanabe, Takashi Taniguchi, Jonghwan Kim","doi":"10.1007/s40042-024-01142-3","DOIUrl":null,"url":null,"abstract":"<div><p>Van der Waals (vdW) two-dimensional semiconductors exhibit excellent optical properties due to their atomically thin thickness and unique band structures. When they are utilized in optoelectronic device applications, the devices show excellent performance as shown for transition metal dichalcogenides and graphene. However, at telecom frequencies, these demonstrations have been largely missing yet. In this study, we demonstrate that trilayer phosphorene pn-diodes can efficiently emit electroluminescence and generate photocurrent at telecom frequencies. Split gates realize electrically tunable pn-diode devices. Under reverse bias, the device shows prominent photocurrent in the photovoltaic mode. Under forward bias, the device shows prominent electroluminescence at the band edge of 0.82 eV. Interestingly, electroluminescence exhibits strong optical anisotropy due to the crystal anisotropy. Our study shows promising potential of trilayer phosphorene for efficient light emitting and photodetection device applications at telecom frequencies.</p></div>","PeriodicalId":677,"journal":{"name":"Journal of the Korean Physical Society","volume":"85 6","pages":"520 - 524"},"PeriodicalIF":0.8000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electroluminescence and photocurrent generation in pn-diode of trilayer phosphorene\",\"authors\":\"Sangho Yoon, Taeho Kim, Su-Beom Song, Kenji Watanabe, Takashi Taniguchi, Jonghwan Kim\",\"doi\":\"10.1007/s40042-024-01142-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Van der Waals (vdW) two-dimensional semiconductors exhibit excellent optical properties due to their atomically thin thickness and unique band structures. When they are utilized in optoelectronic device applications, the devices show excellent performance as shown for transition metal dichalcogenides and graphene. However, at telecom frequencies, these demonstrations have been largely missing yet. In this study, we demonstrate that trilayer phosphorene pn-diodes can efficiently emit electroluminescence and generate photocurrent at telecom frequencies. Split gates realize electrically tunable pn-diode devices. Under reverse bias, the device shows prominent photocurrent in the photovoltaic mode. Under forward bias, the device shows prominent electroluminescence at the band edge of 0.82 eV. Interestingly, electroluminescence exhibits strong optical anisotropy due to the crystal anisotropy. Our study shows promising potential of trilayer phosphorene for efficient light emitting and photodetection device applications at telecom frequencies.</p></div>\",\"PeriodicalId\":677,\"journal\":{\"name\":\"Journal of the Korean Physical Society\",\"volume\":\"85 6\",\"pages\":\"520 - 524\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Korean Physical Society\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40042-024-01142-3\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korean Physical Society","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s40042-024-01142-3","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
范德华(vdW)二维半导体因其原子级的薄厚度和独特的带状结构而表现出卓越的光学特性。当它们被应用于光电设备时,设备会显示出卓越的性能,过渡金属二卤化物和石墨烯就是很好的例子。然而,在电信频率上,这些演示还基本缺失。在这项研究中,我们证明了三层磷化烯 pn 二极管能在电信频率下有效地发出电致发光并产生光电流。分裂栅极实现了可电调的 pn 二极管器件。在反向偏压下,该器件在光伏模式下显示出显著的光电流。在正向偏压下,该器件在 0.82 eV 的带边缘显示出显著的电致发光。有趣的是,由于晶体的各向异性,电致发光表现出很强的光学各向异性。我们的研究表明,三层磷烯在电信频率下的高效发光和光探测器件应用方面具有广阔的发展前景。
Electroluminescence and photocurrent generation in pn-diode of trilayer phosphorene
Van der Waals (vdW) two-dimensional semiconductors exhibit excellent optical properties due to their atomically thin thickness and unique band structures. When they are utilized in optoelectronic device applications, the devices show excellent performance as shown for transition metal dichalcogenides and graphene. However, at telecom frequencies, these demonstrations have been largely missing yet. In this study, we demonstrate that trilayer phosphorene pn-diodes can efficiently emit electroluminescence and generate photocurrent at telecom frequencies. Split gates realize electrically tunable pn-diode devices. Under reverse bias, the device shows prominent photocurrent in the photovoltaic mode. Under forward bias, the device shows prominent electroluminescence at the band edge of 0.82 eV. Interestingly, electroluminescence exhibits strong optical anisotropy due to the crystal anisotropy. Our study shows promising potential of trilayer phosphorene for efficient light emitting and photodetection device applications at telecom frequencies.
期刊介绍:
The Journal of the Korean Physical Society (JKPS) covers all fields of physics spanning from statistical physics and condensed matter physics to particle physics. The manuscript to be published in JKPS is required to hold the originality, significance, and recent completeness. The journal is composed of Full paper, Letters, and Brief sections. In addition, featured articles with outstanding results are selected by the Editorial board and introduced in the online version. For emphasis on aspect of international journal, several world-distinguished researchers join the Editorial board. High quality of papers may be express-published when it is recommended or requested.