针对目标和羽流背景的门控 SWIR 成像系统性能分析

IF 0.8 4区 物理与天体物理 Q3 PHYSICS, MULTIDISCIPLINARY Journal of the Korean Physical Society Pub Date : 2024-08-13 DOI:10.1007/s40042-024-01158-9
Jung Rim Nam, Yong San Shin, Eun Suk Yoon
{"title":"针对目标和羽流背景的门控 SWIR 成像系统性能分析","authors":"Jung Rim Nam,&nbsp;Yong San Shin,&nbsp;Eun Suk Yoon","doi":"10.1007/s40042-024-01158-9","DOIUrl":null,"url":null,"abstract":"<div><p>In targets like airplanes, rockets, or missiles, there are both the target and the plume. When tracking the target through imaging optics, the plume can become background depending on the perspective of the optical system. When plumes are in the background, the target image may be obscured by the saturation of the plume signals. In this study, a range-gated short-wave infrared (SWIR) imaging system was considered for the acquisition and tracking of the target against the plume background. The target signal is the illumination laser light reflected from the target and the background signal is the self-radiation of the plume. We considered a method using the illumination laser energy and the detector integration time to increase the target signal and decrease the plume signal. We analyzed the system signal-to-noise ratio (SNR) as a function of the illumination laser energy and the detector integration time. As a result, we derived system design specifications satisfying the SNR greater than 2.5.</p></div>","PeriodicalId":677,"journal":{"name":"Journal of the Korean Physical Society","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance analysis of gated SWIR imaging system for target against plume background\",\"authors\":\"Jung Rim Nam,&nbsp;Yong San Shin,&nbsp;Eun Suk Yoon\",\"doi\":\"10.1007/s40042-024-01158-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In targets like airplanes, rockets, or missiles, there are both the target and the plume. When tracking the target through imaging optics, the plume can become background depending on the perspective of the optical system. When plumes are in the background, the target image may be obscured by the saturation of the plume signals. In this study, a range-gated short-wave infrared (SWIR) imaging system was considered for the acquisition and tracking of the target against the plume background. The target signal is the illumination laser light reflected from the target and the background signal is the self-radiation of the plume. We considered a method using the illumination laser energy and the detector integration time to increase the target signal and decrease the plume signal. We analyzed the system signal-to-noise ratio (SNR) as a function of the illumination laser energy and the detector integration time. As a result, we derived system design specifications satisfying the SNR greater than 2.5.</p></div>\",\"PeriodicalId\":677,\"journal\":{\"name\":\"Journal of the Korean Physical Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Korean Physical Society\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40042-024-01158-9\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korean Physical Society","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s40042-024-01158-9","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在飞机、火箭或导弹等目标中,既有目标,也有烟羽。通过成像光学系统跟踪目标时,根据光学系统的视角,烟羽可能成为背景。当烟羽处于背景中时,目标图像可能会被饱和的烟羽信号遮挡。在本研究中,考虑采用测距门控短波红外(SWIR)成像系统来获取和跟踪烟羽背景下的目标。目标信号是目标反射的照明激光,背景信号是羽流的自辐射。我们考虑了一种利用照明激光能量和探测器积分时间来增加目标信号和减少羽流信号的方法。我们分析了系统信噪比(SNR)与照明激光能量和探测器积分时间的函数关系。因此,我们得出了信噪比大于 2.5 的系统设计规格。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Performance analysis of gated SWIR imaging system for target against plume background

In targets like airplanes, rockets, or missiles, there are both the target and the plume. When tracking the target through imaging optics, the plume can become background depending on the perspective of the optical system. When plumes are in the background, the target image may be obscured by the saturation of the plume signals. In this study, a range-gated short-wave infrared (SWIR) imaging system was considered for the acquisition and tracking of the target against the plume background. The target signal is the illumination laser light reflected from the target and the background signal is the self-radiation of the plume. We considered a method using the illumination laser energy and the detector integration time to increase the target signal and decrease the plume signal. We analyzed the system signal-to-noise ratio (SNR) as a function of the illumination laser energy and the detector integration time. As a result, we derived system design specifications satisfying the SNR greater than 2.5.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of the Korean Physical Society
Journal of the Korean Physical Society PHYSICS, MULTIDISCIPLINARY-
CiteScore
1.20
自引率
16.70%
发文量
276
审稿时长
5.5 months
期刊介绍: The Journal of the Korean Physical Society (JKPS) covers all fields of physics spanning from statistical physics and condensed matter physics to particle physics. The manuscript to be published in JKPS is required to hold the originality, significance, and recent completeness. The journal is composed of Full paper, Letters, and Brief sections. In addition, featured articles with outstanding results are selected by the Editorial board and introduced in the online version. For emphasis on aspect of international journal, several world-distinguished researchers join the Editorial board. High quality of papers may be express-published when it is recommended or requested.
期刊最新文献
Erratum: Comparative analysis of single and triple material 10 nm Tri-gate FinFET Revisit to the fluid Love numbers and the permanent tide of the Earth Dictionary learning-based denoising algorithm with expected patch log likelihood in diffusion-weighted magnetic resonance image Synthesis and characterization of Fe-doped ZnO films for enhanced NO2 gas-sensing applications Quantum discord in the early universe with non-trivial sound speed
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1