Aleksandr Urakov, Natalya Urakova, Aleksey Reshetnikov, Aleksey Shklyaev, Vladimir Nikolenko, Anatoly Osipov, Natalya Klyachko, Yulia Sorokina, Nikita Muhutdinov, Sergey Okovityi, Petr Shabanov
{"title":"过氧化氢酶:过氧化氢治疗 COVID-19 的潜在药理靶点","authors":"Aleksandr Urakov, Natalya Urakova, Aleksey Reshetnikov, Aleksey Shklyaev, Vladimir Nikolenko, Anatoly Osipov, Natalya Klyachko, Yulia Sorokina, Nikita Muhutdinov, Sergey Okovityi, Petr Shabanov","doi":"10.2174/0115680266322046240819053909","DOIUrl":null,"url":null,"abstract":": This manuscript is a meta-analysis performed according to PRISMA guidelines. It shows that acute respiratory distress syndrome in COVID-19 complicated by airway obstruction with sputum and mucus, as well as cases of asphyxia with blood, serous fluid, pus, or meconium, can sometimes cause hypoxemia because the medical standard does not include intrapulmonary solutions that release oxygen. One promising avenue for finding and developing the necessary drugs may be the physical-chemical repurposing of hydrogen peroxide solution from antiseptics into inhaled and intrapulmonary mucolytics, pyolytics, and oxygen-releasing antihypoxants by replacing the acidic properties of hydrogen peroxide with alkaline properties. The fact is that an alkaline hydrogen peroxide solution liquefies said biological masses through alkaline saponification of lipid and protein-lipid complexes and simultaneously “blasts” the masses through catalase cleavage of hydrogen peroxide into water and oxygen gas, since these masses are rich in catalase. The results of the first experiments show that inhalation and intrapulmonary injections of alkaline hydrogen peroxide solutions can significantly optimize the treatment of suffocation and hypoxemia. Value of the data: 1. Why are these data useful? These data provide a new perspective way for intrapulmonary drugs and new technologies for the emergency increase of blood oxygenation through the lungs in asphyxia with thick sputum, mucus, pus, meconium and blood. 2. Who can benefit from these data? New drug developers, drug manufacturers, medical professionals providing emergency medical care, as well as pulmonologists, physiatrists, obstetricians and gynecologists can benefit from the data presented in this article. 3. How can these data be used/reused for further insights or development of experiments? These data can be used to develop new drugs and new technologies for the treatment of suffocation and hypoxia in the final stage of COVID-19, severe asthma attacks, purulent obstructive bronchitis, blood asphyxia in cancer and wounded lung in intensive care and anesthesiology departments. In addition, these data can be used to modernize expectorant, mucolytic, pyolytic, hemolytic and meconiolytic and expand the arsenal of intrapulmonary drugs.","PeriodicalId":11076,"journal":{"name":"Current topics in medicinal chemistry","volume":"7 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Catalase: A Potential Pharmacologic Target for Hydrogen Peroxide in the Treatment of COVID-19\",\"authors\":\"Aleksandr Urakov, Natalya Urakova, Aleksey Reshetnikov, Aleksey Shklyaev, Vladimir Nikolenko, Anatoly Osipov, Natalya Klyachko, Yulia Sorokina, Nikita Muhutdinov, Sergey Okovityi, Petr Shabanov\",\"doi\":\"10.2174/0115680266322046240819053909\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": This manuscript is a meta-analysis performed according to PRISMA guidelines. It shows that acute respiratory distress syndrome in COVID-19 complicated by airway obstruction with sputum and mucus, as well as cases of asphyxia with blood, serous fluid, pus, or meconium, can sometimes cause hypoxemia because the medical standard does not include intrapulmonary solutions that release oxygen. One promising avenue for finding and developing the necessary drugs may be the physical-chemical repurposing of hydrogen peroxide solution from antiseptics into inhaled and intrapulmonary mucolytics, pyolytics, and oxygen-releasing antihypoxants by replacing the acidic properties of hydrogen peroxide with alkaline properties. The fact is that an alkaline hydrogen peroxide solution liquefies said biological masses through alkaline saponification of lipid and protein-lipid complexes and simultaneously “blasts” the masses through catalase cleavage of hydrogen peroxide into water and oxygen gas, since these masses are rich in catalase. The results of the first experiments show that inhalation and intrapulmonary injections of alkaline hydrogen peroxide solutions can significantly optimize the treatment of suffocation and hypoxemia. Value of the data: 1. Why are these data useful? These data provide a new perspective way for intrapulmonary drugs and new technologies for the emergency increase of blood oxygenation through the lungs in asphyxia with thick sputum, mucus, pus, meconium and blood. 2. Who can benefit from these data? New drug developers, drug manufacturers, medical professionals providing emergency medical care, as well as pulmonologists, physiatrists, obstetricians and gynecologists can benefit from the data presented in this article. 3. How can these data be used/reused for further insights or development of experiments? These data can be used to develop new drugs and new technologies for the treatment of suffocation and hypoxia in the final stage of COVID-19, severe asthma attacks, purulent obstructive bronchitis, blood asphyxia in cancer and wounded lung in intensive care and anesthesiology departments. In addition, these data can be used to modernize expectorant, mucolytic, pyolytic, hemolytic and meconiolytic and expand the arsenal of intrapulmonary drugs.\",\"PeriodicalId\":11076,\"journal\":{\"name\":\"Current topics in medicinal chemistry\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current topics in medicinal chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0115680266322046240819053909\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current topics in medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115680266322046240819053909","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Catalase: A Potential Pharmacologic Target for Hydrogen Peroxide in the Treatment of COVID-19
: This manuscript is a meta-analysis performed according to PRISMA guidelines. It shows that acute respiratory distress syndrome in COVID-19 complicated by airway obstruction with sputum and mucus, as well as cases of asphyxia with blood, serous fluid, pus, or meconium, can sometimes cause hypoxemia because the medical standard does not include intrapulmonary solutions that release oxygen. One promising avenue for finding and developing the necessary drugs may be the physical-chemical repurposing of hydrogen peroxide solution from antiseptics into inhaled and intrapulmonary mucolytics, pyolytics, and oxygen-releasing antihypoxants by replacing the acidic properties of hydrogen peroxide with alkaline properties. The fact is that an alkaline hydrogen peroxide solution liquefies said biological masses through alkaline saponification of lipid and protein-lipid complexes and simultaneously “blasts” the masses through catalase cleavage of hydrogen peroxide into water and oxygen gas, since these masses are rich in catalase. The results of the first experiments show that inhalation and intrapulmonary injections of alkaline hydrogen peroxide solutions can significantly optimize the treatment of suffocation and hypoxemia. Value of the data: 1. Why are these data useful? These data provide a new perspective way for intrapulmonary drugs and new technologies for the emergency increase of blood oxygenation through the lungs in asphyxia with thick sputum, mucus, pus, meconium and blood. 2. Who can benefit from these data? New drug developers, drug manufacturers, medical professionals providing emergency medical care, as well as pulmonologists, physiatrists, obstetricians and gynecologists can benefit from the data presented in this article. 3. How can these data be used/reused for further insights or development of experiments? These data can be used to develop new drugs and new technologies for the treatment of suffocation and hypoxia in the final stage of COVID-19, severe asthma attacks, purulent obstructive bronchitis, blood asphyxia in cancer and wounded lung in intensive care and anesthesiology departments. In addition, these data can be used to modernize expectorant, mucolytic, pyolytic, hemolytic and meconiolytic and expand the arsenal of intrapulmonary drugs.
期刊介绍:
Current Topics in Medicinal Chemistry is a forum for the review of areas of keen and topical interest to medicinal chemists and others in the allied disciplines. Each issue is solely devoted to a specific topic, containing six to nine reviews, which provide the reader a comprehensive survey of that area. A Guest Editor who is an expert in the topic under review, will assemble each issue. The scope of Current Topics in Medicinal Chemistry will cover all areas of medicinal chemistry, including current developments in rational drug design, synthetic chemistry, bioorganic chemistry, high-throughput screening, combinatorial chemistry, compound diversity measurements, drug absorption, drug distribution, metabolism, new and emerging drug targets, natural products, pharmacogenomics, and structure-activity relationships. Medicinal chemistry is a rapidly maturing discipline. The study of how structure and function are related is absolutely essential to understanding the molecular basis of life. Current Topics in Medicinal Chemistry aims to contribute to the growth of scientific knowledge and insight, and facilitate the discovery and development of new therapeutic agents to treat debilitating human disorders. The journal is essential for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important advances.