Jiung-Ran Liao, Jian-Ming Cheng, Vincent K.S. Hsiao
{"title":"通过频率调制激光二极管自混合干涉仪增强振动测量功能","authors":"Jiung-Ran Liao, Jian-Ming Cheng, Vincent K.S. Hsiao","doi":"10.1007/s00340-024-08316-8","DOIUrl":null,"url":null,"abstract":"<div><p>Self-mixing interference (SMI) has emerged as a powerful non-contact vibration sensing technique, leveraging the inherent coupling between laser emission and external optical feedback. However, conventional SMI systems often face limitations in signal resolution and measurement accuracy, particularly when probing low-amplitude vibrations or low-reflectivity targets. This study proposes a frequency modulation (FM) approach, FM-SMI, to enhance the capabilities of SMI setups. By intentionally modulating the laser frequency of 20 kHz, the FM-SMI technique induces a segmentation of the interference signal, effectively increasing the temporal resolution and facilitating the detection of finer vibration details. Comprehensive experiments involving oscillating speakers and rotating silicon wafers validate the superior performance of the FM-SMI system. Notably, the frequency-modulated signals exhibit stability and robustness, even under low-amplitude vibration conditions or when targeting low-reflectivity surfaces. The enhanced signal quality, coupled with numerical processing techniques, enables precise extraction of vibration characteristics, including amplitude variations and surface topographies. The proposed FM-SMI approach demonstrates its potential as a versatile tool for high-precision, non-contact vibration measurements across diverse applications, such as, non-destructive testing and the characterization of vibration induced by the rotational systems.</p></div>","PeriodicalId":474,"journal":{"name":"Applied Physics B","volume":"130 10","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced vibration measurement through frequency modulated laser diode self-mixing interferometry\",\"authors\":\"Jiung-Ran Liao, Jian-Ming Cheng, Vincent K.S. Hsiao\",\"doi\":\"10.1007/s00340-024-08316-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Self-mixing interference (SMI) has emerged as a powerful non-contact vibration sensing technique, leveraging the inherent coupling between laser emission and external optical feedback. However, conventional SMI systems often face limitations in signal resolution and measurement accuracy, particularly when probing low-amplitude vibrations or low-reflectivity targets. This study proposes a frequency modulation (FM) approach, FM-SMI, to enhance the capabilities of SMI setups. By intentionally modulating the laser frequency of 20 kHz, the FM-SMI technique induces a segmentation of the interference signal, effectively increasing the temporal resolution and facilitating the detection of finer vibration details. Comprehensive experiments involving oscillating speakers and rotating silicon wafers validate the superior performance of the FM-SMI system. Notably, the frequency-modulated signals exhibit stability and robustness, even under low-amplitude vibration conditions or when targeting low-reflectivity surfaces. The enhanced signal quality, coupled with numerical processing techniques, enables precise extraction of vibration characteristics, including amplitude variations and surface topographies. The proposed FM-SMI approach demonstrates its potential as a versatile tool for high-precision, non-contact vibration measurements across diverse applications, such as, non-destructive testing and the characterization of vibration induced by the rotational systems.</p></div>\",\"PeriodicalId\":474,\"journal\":{\"name\":\"Applied Physics B\",\"volume\":\"130 10\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Physics B\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00340-024-08316-8\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics B","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s00340-024-08316-8","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
Enhanced vibration measurement through frequency modulated laser diode self-mixing interferometry
Self-mixing interference (SMI) has emerged as a powerful non-contact vibration sensing technique, leveraging the inherent coupling between laser emission and external optical feedback. However, conventional SMI systems often face limitations in signal resolution and measurement accuracy, particularly when probing low-amplitude vibrations or low-reflectivity targets. This study proposes a frequency modulation (FM) approach, FM-SMI, to enhance the capabilities of SMI setups. By intentionally modulating the laser frequency of 20 kHz, the FM-SMI technique induces a segmentation of the interference signal, effectively increasing the temporal resolution and facilitating the detection of finer vibration details. Comprehensive experiments involving oscillating speakers and rotating silicon wafers validate the superior performance of the FM-SMI system. Notably, the frequency-modulated signals exhibit stability and robustness, even under low-amplitude vibration conditions or when targeting low-reflectivity surfaces. The enhanced signal quality, coupled with numerical processing techniques, enables precise extraction of vibration characteristics, including amplitude variations and surface topographies. The proposed FM-SMI approach demonstrates its potential as a versatile tool for high-precision, non-contact vibration measurements across diverse applications, such as, non-destructive testing and the characterization of vibration induced by the rotational systems.
期刊介绍:
Features publication of experimental and theoretical investigations in applied physics
Offers invited reviews in addition to regular papers
Coverage includes laser physics, linear and nonlinear optics, ultrafast phenomena, photonic devices, optical and laser materials, quantum optics, laser spectroscopy of atoms, molecules and clusters, and more
94% of authors who answered a survey reported that they would definitely publish or probably publish in the journal again
Publishing essential research results in two of the most important areas of applied physics, both Applied Physics sections figure among the top most cited journals in this field.
In addition to regular papers Applied Physics B: Lasers and Optics features invited reviews. Fields of topical interest are covered by feature issues. The journal also includes a rapid communication section for the speedy publication of important and particularly interesting results.