竹纤维复合材料在增材制造中的机遇与挑战:综述

IF 1.4 4区 物理与天体物理 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY AIP Advances Pub Date : 2024-09-06 DOI:10.1063/5.0227267
Muthuselvan Balasubramanian, R. Saravanan, T. Sathish, Jayant Giri, Rustem Zairov, S. M. Mozammil Hasnain, Rakhymzhan Turmanov
{"title":"竹纤维复合材料在增材制造中的机遇与挑战:综述","authors":"Muthuselvan Balasubramanian, R. Saravanan, T. Sathish, Jayant Giri, Rustem Zairov, S. M. Mozammil Hasnain, Rakhymzhan Turmanov","doi":"10.1063/5.0227267","DOIUrl":null,"url":null,"abstract":"This study explores the transformative impact of three-dimensional printing, or additive manufacturing, in the development of bamboo-based 3D printing parts. Recently, there has been growing interest in incorporating natural fibers, such as bamboo, into polymers to enhance the structural integrity and strength of 3D-printed polymeric materials. This paper thoroughly examines the opportunities and obstacles associated with using additive manufacturing techniques to print bamboo fiber composites. This study includes an analysis of the mechanical properties, thermal properties, biodegradability, and environmental benefits of bamboo fiber composites. It also covers the processing methods and the printing parameters of bamboo fiber composites. This paper review focuses on the future prospects of bamboo fiber composites as a sustainable material in additive manufacturing based on the analysis of the existing literature and the recent research developments.","PeriodicalId":7619,"journal":{"name":"AIP Advances","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Opportunities and challenges of bamboo fiber composites in additive manufacturing: A comprehensive review\",\"authors\":\"Muthuselvan Balasubramanian, R. Saravanan, T. Sathish, Jayant Giri, Rustem Zairov, S. M. Mozammil Hasnain, Rakhymzhan Turmanov\",\"doi\":\"10.1063/5.0227267\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study explores the transformative impact of three-dimensional printing, or additive manufacturing, in the development of bamboo-based 3D printing parts. Recently, there has been growing interest in incorporating natural fibers, such as bamboo, into polymers to enhance the structural integrity and strength of 3D-printed polymeric materials. This paper thoroughly examines the opportunities and obstacles associated with using additive manufacturing techniques to print bamboo fiber composites. This study includes an analysis of the mechanical properties, thermal properties, biodegradability, and environmental benefits of bamboo fiber composites. It also covers the processing methods and the printing parameters of bamboo fiber composites. This paper review focuses on the future prospects of bamboo fiber composites as a sustainable material in additive manufacturing based on the analysis of the existing literature and the recent research developments.\",\"PeriodicalId\":7619,\"journal\":{\"name\":\"AIP Advances\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIP Advances\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0227267\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIP Advances","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1063/5.0227267","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了三维打印或增材制造在开发以竹子为基础的三维打印部件方面的变革性影响。最近,人们越来越关注将竹子等天然纤维融入聚合物中,以增强三维打印聚合物材料的结构完整性和强度。本文深入研究了使用增材制造技术打印竹纤维复合材料的相关机遇和障碍。本研究包括对竹纤维复合材料的机械性能、热性能、生物降解性和环境效益的分析。研究还包括竹纤维复合材料的加工方法和打印参数。本文在分析现有文献和最新研究进展的基础上,重点探讨了竹纤维复合材料作为可持续材料在增材制造中的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Opportunities and challenges of bamboo fiber composites in additive manufacturing: A comprehensive review
This study explores the transformative impact of three-dimensional printing, or additive manufacturing, in the development of bamboo-based 3D printing parts. Recently, there has been growing interest in incorporating natural fibers, such as bamboo, into polymers to enhance the structural integrity and strength of 3D-printed polymeric materials. This paper thoroughly examines the opportunities and obstacles associated with using additive manufacturing techniques to print bamboo fiber composites. This study includes an analysis of the mechanical properties, thermal properties, biodegradability, and environmental benefits of bamboo fiber composites. It also covers the processing methods and the printing parameters of bamboo fiber composites. This paper review focuses on the future prospects of bamboo fiber composites as a sustainable material in additive manufacturing based on the analysis of the existing literature and the recent research developments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
AIP Advances
AIP Advances NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
2.80
自引率
6.20%
发文量
1233
审稿时长
2-4 weeks
期刊介绍: AIP Advances is an open access journal publishing in all areas of physical sciences—applied, theoretical, and experimental. All published articles are freely available to read, download, and share. The journal prides itself on the belief that all good science is important and relevant. Our inclusive scope and publication standards make it an essential outlet for scientists in the physical sciences. AIP Advances is a community-based journal, with a fast production cycle. The quick publication process and open-access model allows us to quickly distribute new scientific concepts. Our Editors, assisted by peer review, determine whether a manuscript is technically correct and original. After publication, the readership evaluates whether a manuscript is timely, relevant, or significant.
期刊最新文献
Mathematical analysis of the Wiener processes with time-delayed feedback Numerical simulation and experimental study of the dynamic characteristics of a gas turbine rotor system with beam sea and head sea excitation Design and simulation of a Ka-band frequency doubling gyroklystron amplifier Flexible and anisotropically conductive film by assembly of silicone rubber and cobalt-coated glass fiber composites Decomposition characteristics and influencing mechanisms of C4F7N/CO2 gas with different metal materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1