Pub Date : 2026-01-28eCollection Date: 2026-01-01DOI: 10.1063/5.0304790
Ming Lu, Pingping Li, Jason E Moore, Xiaoyu Jiang, John C Gore, Xinqiang Yan
Stretchable RF coils offer the potential to improve MRI performance by conforming closely to patient anatomy, regardless of patient size, thereby enhancing both signal-to-noise ratio (SNR) and patient comfort. In this work, we investigate a stretchable receive array design based on the coaxial capacitor (COCA) coil for 7 T MRI, constructed primarily from ultra-flexible Litz wire stitched onto elastic fabric substrates. The COCA coil eliminates the need for lumped capacitors and maintains stable decoupling performance under transverse stretching, provided that the overlapped area and the coil area change proportionally as the coil is stretched. Bench tests and phantom imaging experiments demonstrate that elliptical COCA coils (in the non-stretched state) maintain consistent decoupling characteristics across stretch ratios up to ×1.3 and outperform fixed arrays in SNR across varying phantom sizes. The proposed design shows strong potential for integration into wearable coil arrays, enabling improved imaging quality and adaptability for diverse patient anatomies.
{"title":"Coaxial capacitor (COCA) coil for stretchable arrays in ultrahigh-field MRI.","authors":"Ming Lu, Pingping Li, Jason E Moore, Xiaoyu Jiang, John C Gore, Xinqiang Yan","doi":"10.1063/5.0304790","DOIUrl":"10.1063/5.0304790","url":null,"abstract":"<p><p>Stretchable RF coils offer the potential to improve MRI performance by conforming closely to patient anatomy, regardless of patient size, thereby enhancing both signal-to-noise ratio (SNR) and patient comfort. In this work, we investigate a stretchable receive array design based on the coaxial capacitor (COCA) coil for 7 T MRI, constructed primarily from ultra-flexible Litz wire stitched onto elastic fabric substrates. The COCA coil eliminates the need for lumped capacitors and maintains stable decoupling performance under transverse stretching, provided that the overlapped area and the coil area change proportionally as the coil is stretched. Bench tests and phantom imaging experiments demonstrate that elliptical COCA coils (in the non-stretched state) maintain consistent decoupling characteristics across stretch ratios up to ×1.3 and outperform fixed arrays in SNR across varying phantom sizes. The proposed design shows strong potential for integration into wearable coil arrays, enabling improved imaging quality and adaptability for diverse patient anatomies.</p>","PeriodicalId":7619,"journal":{"name":"AIP Advances","volume":"16 1","pages":"015129"},"PeriodicalIF":1.4,"publicationDate":"2026-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12854774/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146103543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-08-11eCollection Date: 2025-08-01DOI: 10.1063/5.0278720
Lahcen Akerkouch, Trung Bao Le
This paper aims to examine the ability to control a model of red blood cell (RBC) dynamics and the associated extracellular flow patterns in microfluidic channels via oscillatory flows. Our computational approach employs a hybrid continuum-particle coupling, in which the cell membrane and cytosol fluid are modeled using the dissipative particle dynamics method. The blood plasma is modeled as an incompressible fluid via the immersed boundary method. This coupling is novel because it provides an accurate description of RBC dynamics while the extracellular flow patterns around the RBCs are also captured in detail. Our coupling methodology is validated with available experimental and computational data in the literature and shows excellent agreement. We explore the controlling regimes by varying the shape of the oscillatory flow waveform at the channel inlet. Our simulation results show that a host of RBC morphological dynamics emerges depending on the channel geometry, the incoming flow waveform, and the RBC initial location. Complex dynamics of RBC are induced by the flow waveform. Our results show that the RBC shape is strongly dependent on its initial location. Our results suggest that the controlling of oscillatory flows can be used to induce specific morphological shapes of RBCs and the surrounding fluid patterns in bio-engineering applications.
{"title":"Shape transitions of red blood cell under oscillatory flows in microchannels.","authors":"Lahcen Akerkouch, Trung Bao Le","doi":"10.1063/5.0278720","DOIUrl":"10.1063/5.0278720","url":null,"abstract":"<p><p>This paper aims to examine the ability to control a model of red blood cell (RBC) dynamics and the associated extracellular flow patterns in microfluidic channels via oscillatory flows. Our computational approach employs a hybrid continuum-particle coupling, in which the cell membrane and cytosol fluid are modeled using the dissipative particle dynamics method. The blood plasma is modeled as an incompressible fluid via the immersed boundary method. This coupling is novel because it provides an accurate description of RBC dynamics while the extracellular flow patterns around the RBCs are also captured in detail. Our coupling methodology is validated with available experimental and computational data in the literature and shows excellent agreement. We explore the controlling regimes by varying the shape of the oscillatory flow waveform at the channel inlet. Our simulation results show that a host of RBC morphological dynamics emerges depending on the channel geometry, the incoming flow waveform, and the RBC initial location. Complex dynamics of RBC are induced by the flow waveform. Our results show that the RBC shape is strongly dependent on its initial location. Our results suggest that the controlling of oscillatory flows can be used to induce specific morphological shapes of RBCs and the surrounding fluid patterns in bio-engineering applications.</p>","PeriodicalId":7619,"journal":{"name":"AIP Advances","volume":"15 8","pages":"085010"},"PeriodicalIF":1.4,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12342962/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144844016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-06-06eCollection Date: 2025-06-01DOI: 10.1063/5.0272623
Mohammad Amer Allaf, Koji Okamoto, Takuto Owa
Plasmonic heating of gold nanoparticles (GNPs) using pulsed lasers (PLs) enables microbubble generation for imaging, diagnostics, and microfluidics. However, aggregation and photomodification cause inconsistencies (variations) in microbubble formation and distribution, particularly in pool-like environments where GNPs undergo aggregation and photomodification. This study experimentally investigates microbubble generation by heating GNPs (532 nm, nanoseconds PL) of various sizes and concentrations, using high-speed imaging (20 kfps). Results show unpredictable variations in bubble formation area (BFA), even under similar energy absorption. Large individual microbubbles were observed at relatively low energy absorption, primarily due to aggregation. Boiling on the transparent surface occurred in multiple tests, a phenomenon linked to optical pulling forces that deposited GNPs on the surface. This produced well-defined semi-circular bubbles (∼600 μm) within 50 μs. MB formation was more concentrated near the backward facing surface than along the laser beam, highlighting the role of optical pulling. Dissolved gas release influenced microbubble growth, particularly in samples prone to aggregation. In addition, prior laser pulses impacted BFA through photomodification and aggregation, sometimes reducing BFA despite higher energy absorption. This study provides new insights into the factors influencing microbubble formation and distribution in the plasmonic heating of GNPs. Understanding these mechanisms can help improve the reliability and efficiency of photothermal applications, enabling better control over plasmonic bubble generation for various scientific and technological advancements.
{"title":"Using high speed visualization to identify variations in the formation and distribution of plasmonic microbubbles.","authors":"Mohammad Amer Allaf, Koji Okamoto, Takuto Owa","doi":"10.1063/5.0272623","DOIUrl":"10.1063/5.0272623","url":null,"abstract":"<p><p>Plasmonic heating of gold nanoparticles (GNPs) using pulsed lasers (PLs) enables microbubble generation for imaging, diagnostics, and microfluidics. However, aggregation and photomodification cause inconsistencies (variations) in microbubble formation and distribution, particularly in pool-like environments where GNPs undergo aggregation and photomodification. This study experimentally investigates microbubble generation by heating GNPs (532 nm, nanoseconds PL) of various sizes and concentrations, using high-speed imaging (20 kfps). Results show unpredictable variations in bubble formation area (BFA), even under similar energy absorption. Large individual microbubbles were observed at relatively low energy absorption, primarily due to aggregation. Boiling on the transparent surface occurred in multiple tests, a phenomenon linked to optical pulling forces that deposited GNPs on the surface. This produced well-defined semi-circular bubbles (∼600 <i>μ</i>m) within 50 <i>μ</i>s. MB formation was more concentrated near the backward facing surface than along the laser beam, highlighting the role of optical pulling. Dissolved gas release influenced microbubble growth, particularly in samples prone to aggregation. In addition, prior laser pulses impacted BFA through photomodification and aggregation, sometimes reducing BFA despite higher energy absorption. This study provides new insights into the factors influencing microbubble formation and distribution in the plasmonic heating of GNPs. Understanding these mechanisms can help improve the reliability and efficiency of photothermal applications, enabling better control over plasmonic bubble generation for various scientific and technological advancements.</p>","PeriodicalId":7619,"journal":{"name":"AIP Advances","volume":"15 6","pages":"065109"},"PeriodicalIF":1.4,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12145202/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144245789","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-07eCollection Date: 2025-02-01DOI: 10.1063/5.0239607
Cameron A B Smith, Avinoam Bar-Zion, Qiang Wu, Dina Malounda, Luca Bau, Eleanor Stride, Mikhail G Shapiro, Constantin C Coussios
Genetically encodable gas-filled particles, known as gas vesicles (GVs), have shown promise as a biomolecular contrast agent for ultrasound imaging and have the potential to be used as cavitation nuclei for ultrasound therapy. In this study, we used passive acoustic mapping techniques to characterize GV-seeded cavitation, utilizing 0.5 and 1.6 MHz ultrasound insonation over peak rarefactional pressures ranging from 100 to 2200 kPa. We found that GVs produce cavitation for the duration of the first applied pulse, up to at least 5000 cycles, but that bubble activity diminishes rapidly over subsequent pulses. At 0.5 MHz, the frequency content of cavitation emissions was predominantly broadband in nature, while at 1.6 MHz, narrowband content at harmonics of the main excitation frequency dominated. Simulations and high-speed camera imaging suggest that the received cavitation emissions come not from individual GVs but instead from the coalescence of GV-released gas into larger bubbles during the applied ultrasound pulse. These results will aid the future development of GVs as cavitation nuclei in ultrasound therapy.
{"title":"Ultrafast optical and passive acoustic mapping characterization of nanoscale cavitation nuclei based on gas vesicle proteins.","authors":"Cameron A B Smith, Avinoam Bar-Zion, Qiang Wu, Dina Malounda, Luca Bau, Eleanor Stride, Mikhail G Shapiro, Constantin C Coussios","doi":"10.1063/5.0239607","DOIUrl":"10.1063/5.0239607","url":null,"abstract":"<p><p>Genetically encodable gas-filled particles, known as gas vesicles (GVs), have shown promise as a biomolecular contrast agent for ultrasound imaging and have the potential to be used as cavitation nuclei for ultrasound therapy. In this study, we used passive acoustic mapping techniques to characterize GV-seeded cavitation, utilizing 0.5 and 1.6 MHz ultrasound insonation over peak rarefactional pressures ranging from 100 to 2200 kPa. We found that GVs produce cavitation for the duration of the first applied pulse, up to at least 5000 cycles, but that bubble activity diminishes rapidly over subsequent pulses. At 0.5 MHz, the frequency content of cavitation emissions was predominantly broadband in nature, while at 1.6 MHz, narrowband content at harmonics of the main excitation frequency dominated. Simulations and high-speed camera imaging suggest that the received cavitation emissions come not from individual GVs but instead from the coalescence of GV-released gas into larger bubbles during the applied ultrasound pulse. These results will aid the future development of GVs as cavitation nuclei in ultrasound therapy.</p>","PeriodicalId":7619,"journal":{"name":"AIP Advances","volume":"15 2","pages":"025016"},"PeriodicalIF":1.4,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11811905/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143405167","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-24eCollection Date: 2024-12-01DOI: 10.1063/5.0237169
János Szarvas, Mónika Valiskó, Dirk Gillespie, Dezső Boda
We present simulation results for the Donnan equilibrium between a homogeneous bulk reservoir and inhomogeneous confining geometries with varying number of restricted dimensions, dc. Planar slits (dc = 1), cylindrical pores (dc = 2), and spherical cavities (dc = 3) are considered. The walls have a negative surface charge density. Because different dielectric constants are used in the reservoir and confined system, we used the Donnan grand canonical Monte Carlo method [Boda and Gillespie, J. Mol. Liq. 391, 123372 (2023)] to simulate the equilibrium. The systems with larger confining dimensionality produce greater adsorption of counterions (cations) into the confinements, so cation selectivity increases with increasing dimensionality. The systems with smaller dielectric constants produce more effective coion (anion) exclusion, so cation selectivity increases with decreasing dielectric constant. The combined effect of a more confining space and solvation penalty produces even more efficient anion exclusion and cation selectivity than each separately.
我们给出了均匀体储层和具有不同数量限制尺寸的非均匀约束几何之间的Donnan平衡的模拟结果,其中考虑了平面狭缝(d1 = 1)、圆柱形孔隙(d2 = 2)和球形空腔(d3 = 3)。壁的表面电荷密度是负的。由于储层和密闭系统使用不同的介电常数,我们使用Donnan大正则蒙特卡罗方法[Boda and Gillespie, J. Mol. Liq. 391, 123372(2023)]来模拟平衡。围合维数越大的体系对反离子(阳离子)的吸附量越大,因此阳离子选择性随围合维数的增加而增加。介电常数越小的体系能产生更有效的离子(阴离子)排斥,因此阳离子选择性随介电常数的减小而增加。更封闭的空间和溶剂化惩罚的综合作用比各自单独产生更有效的阴离子排斥和阳离子选择性。
{"title":"Combined effect of confinement and dielectric exclusion on ion adsorption in slits, pores, and cavities.","authors":"János Szarvas, Mónika Valiskó, Dirk Gillespie, Dezső Boda","doi":"10.1063/5.0237169","DOIUrl":"10.1063/5.0237169","url":null,"abstract":"<p><p>We present simulation results for the Donnan equilibrium between a homogeneous bulk reservoir and inhomogeneous confining geometries with varying number of restricted dimensions, <i>d</i> <sub>c</sub>. Planar slits (<i>d</i> <sub>c</sub> = 1), cylindrical pores (<i>d</i> <sub>c</sub> = 2), and spherical cavities (<i>d</i> <sub>c</sub> = 3) are considered. The walls have a negative surface charge density. Because different dielectric constants are used in the reservoir and confined system, we used the Donnan grand canonical Monte Carlo method [Boda and Gillespie, J. Mol. Liq. <b>391</b>, 123372 (2023)] to simulate the equilibrium. The systems with larger confining dimensionality produce greater adsorption of counterions (cations) into the confinements, so cation selectivity increases with increasing dimensionality. The systems with smaller dielectric constants produce more effective coion (anion) exclusion, so cation selectivity increases with decreasing dielectric constant. The combined effect of a more confining space and solvation penalty produces even more efficient anion exclusion and cation selectivity than each separately.</p>","PeriodicalId":7619,"journal":{"name":"AIP Advances","volume":"14 12","pages":"125323"},"PeriodicalIF":1.4,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11672205/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142902596","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-14eCollection Date: 2024-11-01DOI: 10.1063/5.0238119
Jixin Chen
Diffusive adsorption/association is a fundamental step in almost all chemical reactions in diluted solutions, such as organic synthesis, polymerization, self-assembly, biomolecular interactions, electrode dynamics, catalysis, chromatography, air and water environmental dynamics, and social and market dynamics. However, predicting the rate of such a reaction is challenging using the equations established over 100 years ago. Several orders of magnitude differences between the theoretical predictions and experimental measurements for various systems, from self-assembled monolayers to protein-protein aggregations, make such calculations meaningless in many situations. I believe the major problem is that the time-dependent evolution curve of Fick's gradient is an ideal assumption in most cases, and its slope is significantly overestimated. This paper digs into Fick's gradient problem for 3D cases and provides a solution using the single-molecule diffusion probability density function discretely.
{"title":"Dimensional analysis of diffusive association rate equations.","authors":"Jixin Chen","doi":"10.1063/5.0238119","DOIUrl":"10.1063/5.0238119","url":null,"abstract":"<p><p>Diffusive adsorption/association is a fundamental step in almost all chemical reactions in diluted solutions, such as organic synthesis, polymerization, self-assembly, biomolecular interactions, electrode dynamics, catalysis, chromatography, air and water environmental dynamics, and social and market dynamics. However, predicting the rate of such a reaction is challenging using the equations established over 100 years ago. Several orders of magnitude differences between the theoretical predictions and experimental measurements for various systems, from self-assembled monolayers to protein-protein aggregations, make such calculations meaningless in many situations. I believe the major problem is that the time-dependent evolution curve of Fick's gradient is an ideal assumption in most cases, and its slope is significantly overestimated. This paper digs into Fick's gradient problem for 3D cases and provides a solution using the single-molecule diffusion probability density function discretely.</p>","PeriodicalId":7619,"journal":{"name":"AIP Advances","volume":"14 11","pages":"115218"},"PeriodicalIF":1.4,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11567696/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142650562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Miki U. Kobayashi, Kohta Takehara, Hiroyasu Ando, Michio Yamada
It is known that time delays generally make a system unstable. However, it is numerically observed that the diffusion coefficients of the Wiener processes with time-delayed feedback decrease while increasing the time delay τ. In particular, the decay of the diffusion coefficients with the form (11+τ)2 has been confirmed by numerical simulations [Ando et al., Phys. Rev. E 96, 012148 (2017)]. In this paper, we present two analytical derivations for the relation (11+τ)2 by dynamical system approaches using the Laplace transform and stochastic differential equations.
{"title":"Mathematical analysis of the Wiener processes with time-delayed feedback","authors":"Miki U. Kobayashi, Kohta Takehara, Hiroyasu Ando, Michio Yamada","doi":"10.1063/5.0209241","DOIUrl":"https://doi.org/10.1063/5.0209241","url":null,"abstract":"It is known that time delays generally make a system unstable. However, it is numerically observed that the diffusion coefficients of the Wiener processes with time-delayed feedback decrease while increasing the time delay τ. In particular, the decay of the diffusion coefficients with the form (11+τ)2 has been confirmed by numerical simulations [Ando et al., Phys. Rev. E 96, 012148 (2017)]. In this paper, we present two analytical derivations for the relation (11+τ)2 by dynamical system approaches using the Laplace transform and stochastic differential equations.","PeriodicalId":7619,"journal":{"name":"AIP Advances","volume":"208 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142252441","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xin Zhang, YongBao Liu, Qiang Wang, ZhiKai Xing, Mo Li
Vibration analysis is crucial for studying rotor dynamics. The gas turbine rotor system is subjected to complex alternating loads during navigation, resulting in vibrations transmitted to the bearings that alter the system’s dynamic characteristics. Based on the similarity law of the wave resistance test, a hull model was established. Beam sea and head sea tests were conducted in the towing pool to measure the acceleration response at the key positions. A finite element model of the turbine rotor system was established, and the test data were imported into the model after wavelet noise reduction and resampling to calculate the vibration response at the front and rear bearing points. The vibration responses transmitted to different locations and directions caused by beam sea and head sea conditions were analyzed. A comparison and analysis were conducted on the acceleration responses in various locations and directions under beam sea or head sea conditions. The equivalent von Mises stress distribution of the gas turbine rotor system under beam sea and head sea loads was obtained. The vibration transfer model was verified for accuracy and can be used to quickly analyze the vibration response of bearings under wave load transfer. This study provides a theoretical basis and reference for enhancing the stability of the gas turbine rotor system.
振动分析对于研究转子动力学至关重要。燃气轮机转子系统在航行过程中会受到复杂的交变载荷,导致振动传递到轴承,从而改变系统的动态特性。根据波浪阻力试验的相似律,建立了船体模型。在拖曳水池中进行了梁海和顶海试验,以测量关键位置的加速度响应。建立了涡轮转子系统的有限元模型,并将试验数据导入模型,经过小波降噪和重采样,计算出前后轴承点的振动响应。分析了梁海和顶海条件下传递到不同位置和方向的振动响应。对梁海和顶海条件下不同位置和方向的加速度响应进行了比较和分析。得到了燃气轮机转子系统在梁海和顶海载荷下的等效 von Mises 应力分布。振动传递模型的准确性得到了验证,可用于快速分析轴承在波浪载荷传递下的振动响应。该研究为提高燃气轮机转子系统的稳定性提供了理论依据和参考。
{"title":"Numerical simulation and experimental study of the dynamic characteristics of a gas turbine rotor system with beam sea and head sea excitation","authors":"Xin Zhang, YongBao Liu, Qiang Wang, ZhiKai Xing, Mo Li","doi":"10.1063/5.0220752","DOIUrl":"https://doi.org/10.1063/5.0220752","url":null,"abstract":"Vibration analysis is crucial for studying rotor dynamics. The gas turbine rotor system is subjected to complex alternating loads during navigation, resulting in vibrations transmitted to the bearings that alter the system’s dynamic characteristics. Based on the similarity law of the wave resistance test, a hull model was established. Beam sea and head sea tests were conducted in the towing pool to measure the acceleration response at the key positions. A finite element model of the turbine rotor system was established, and the test data were imported into the model after wavelet noise reduction and resampling to calculate the vibration response at the front and rear bearing points. The vibration responses transmitted to different locations and directions caused by beam sea and head sea conditions were analyzed. A comparison and analysis were conducted on the acceleration responses in various locations and directions under beam sea or head sea conditions. The equivalent von Mises stress distribution of the gas turbine rotor system under beam sea and head sea loads was obtained. The vibration transfer model was verified for accuracy and can be used to quickly analyze the vibration response of bearings under wave load transfer. This study provides a theoretical basis and reference for enhancing the stability of the gas turbine rotor system.","PeriodicalId":7619,"journal":{"name":"AIP Advances","volume":"5 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142252442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this study, we prepared electromagnetic cobalt-coated glass fiber (Co@GF) composites via an electroless plating method. Subsequently, a conductive sandwich flexible film consisting of Co@GF composites and liquid silicone rubber (RTV-2) was successfully formed using the tape casting method at room temperature. Based on the perfect coating and excellent electrical conductivity of the Co@GF composites, the resultant RTV-2/Co@GF/RTV-2 sandwich flexible film showed a low volume resistivity of 0.264 Ω·cm and could stretch to 100% (of 4.40 Ω·cm) without obvious fracture. When a magnetic field was applied during the curing process, the electromagnetic Co@GF composites were aligned automatically in the RTV-2 matrix because of their ferromagnetic nature. The as-prepared film exhibited anisotropy in its electrical performance. The volume resistivity parallel to the magnetic field direction is approximately two times lower than that in the perpendicular direction. The maximum difference in the volume resistivity (ρ∥ = 0.768 Ω·cm and ρ⊥ = 1.549 Ω·cm) was obtained at a magnetic field intensity of 800 mT. In addition, a magnetic field intensity of 100 mT helps improve the electrical conductivity of the as-obtained sandwich film. The anisotropic RTV-2/Co@GF/RTV-2 sandwich flexible film is considered a promising flexible electronic sensor, where discrepant inductive sensitivity is required in orthogonal directions.
{"title":"Flexible and anisotropically conductive film by assembly of silicone rubber and cobalt-coated glass fiber composites","authors":"Ruihua Zhou, Baoyu Tan, Hairu Li","doi":"10.1063/5.0226566","DOIUrl":"https://doi.org/10.1063/5.0226566","url":null,"abstract":"In this study, we prepared electromagnetic cobalt-coated glass fiber (Co@GF) composites via an electroless plating method. Subsequently, a conductive sandwich flexible film consisting of Co@GF composites and liquid silicone rubber (RTV-2) was successfully formed using the tape casting method at room temperature. Based on the perfect coating and excellent electrical conductivity of the Co@GF composites, the resultant RTV-2/Co@GF/RTV-2 sandwich flexible film showed a low volume resistivity of 0.264 Ω·cm and could stretch to 100% (of 4.40 Ω·cm) without obvious fracture. When a magnetic field was applied during the curing process, the electromagnetic Co@GF composites were aligned automatically in the RTV-2 matrix because of their ferromagnetic nature. The as-prepared film exhibited anisotropy in its electrical performance. The volume resistivity parallel to the magnetic field direction is approximately two times lower than that in the perpendicular direction. The maximum difference in the volume resistivity (ρ∥ = 0.768 Ω·cm and ρ⊥ = 1.549 Ω·cm) was obtained at a magnetic field intensity of 800 mT. In addition, a magnetic field intensity of 100 mT helps improve the electrical conductivity of the as-obtained sandwich film. The anisotropic RTV-2/Co@GF/RTV-2 sandwich flexible film is considered a promising flexible electronic sensor, where discrepant inductive sensitivity is required in orthogonal directions.","PeriodicalId":7619,"journal":{"name":"AIP Advances","volume":"6 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142252445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
B. Chektybayev, S. Zhunisbek, Ye Kashikbayev, A. Duisen, I. Sokolov, T. Tulenbergenov
This paper presents the results of spectroscopic measurements of plasma in a linear simulator of a plasma-beam installation (PBI) for conducting materials science research. For the first time, non-contact optical diagnostic methods were employed to measure the plasma parameters in the PBI. These measurements were allowed for the clarification of the PBI plasma parameters and the identification of transition zones in different operational modes. Analysis of the plasma emission spectrum enabled the identification of impurity spectral lines and the estimation of key plasma parameters under varying experimental conditions. The spectra were recorded using two optical spectrometers covering a wavelength range of 200–800 nm. The experimental conditions varied in terms of electron beam accelerating voltage (1–5 kV), working gas pressure (1–6 mTorr), and target bias voltage (from −500 to −100 V). The Boltzmann plot method and Stark broadening of the Balmer lines were used to estimate electron temperature and density. Based on the obtained spectroscopic data, the electron density and the electron temperature were determined. The methods described in this study are applicable to linear plasma devices.
{"title":"First spectroscopic studies in the plasma-beam installation","authors":"B. Chektybayev, S. Zhunisbek, Ye Kashikbayev, A. Duisen, I. Sokolov, T. Tulenbergenov","doi":"10.1063/5.0224254","DOIUrl":"https://doi.org/10.1063/5.0224254","url":null,"abstract":"This paper presents the results of spectroscopic measurements of plasma in a linear simulator of a plasma-beam installation (PBI) for conducting materials science research. For the first time, non-contact optical diagnostic methods were employed to measure the plasma parameters in the PBI. These measurements were allowed for the clarification of the PBI plasma parameters and the identification of transition zones in different operational modes. Analysis of the plasma emission spectrum enabled the identification of impurity spectral lines and the estimation of key plasma parameters under varying experimental conditions. The spectra were recorded using two optical spectrometers covering a wavelength range of 200–800 nm. The experimental conditions varied in terms of electron beam accelerating voltage (1–5 kV), working gas pressure (1–6 mTorr), and target bias voltage (from −500 to −100 V). The Boltzmann plot method and Stark broadening of the Balmer lines were used to estimate electron temperature and density. Based on the obtained spectroscopic data, the electron density and the electron temperature were determined. The methods described in this study are applicable to linear plasma devices.","PeriodicalId":7619,"journal":{"name":"AIP Advances","volume":"6 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142252451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}