{"title":"了解辐射合并烧伤时的先天反应和适应性反应。","authors":"Rishav Kumar,Ajay Kumar Sharma,Kirti,Aman Kalonia,Priyanka Shaw,M H Yashvarddhan,Arpana Vibhuti,Sandeep Kumar Shukla","doi":"10.1080/08830185.2024.2402023","DOIUrl":null,"url":null,"abstract":"The occurrence of incidents involving radiation-combined burn injuries (RCBI) poses a significant risk to public health. Understanding the immunological and physiological responses associated with such injuries is crucial for developing care triage to counter the mortality that occurs due to the synergistic effects of radiation and burn injuries. The core focus of this narrative review lies in unraveling the immune response against RCBI. Langerhans cells, mast cells, keratinocytes, and fibroblasts, which induce innate immunity, have been explored for their response to radiation, burns, and combined injuries. In the case of adaptive immune response, exploring behavioral changes in T regulatory (Treg) cells, T helper cells (Th1, Th2, and Th17), and immunoglobulin results in delayed healing compared to burn and radiation injury. The review also includes the function of complement system components such as neutrophils, acute phase proteins (CRP, C3, and C5), and cytokines for their role in RCBI. Combined insults resulting in a reduction in the cell population of immune cells display variation in response based on radiation doses, burn injury types, and their intrinsic radiosensitivity. The lack of approved countermeasures against RCBI poses a significant challenge. Drug repurposing might help to balance immune cell alteration, resulting in fast recovery and decreasing mortality, which gives it clinical significance for its implication on the site of such incidence. However, the exact immune response in RCBI remains insufficiently explored in pre-clinical and clinical stages, which might be due to the non-availability of in vitro models, standard animal models, or human subjects, warranting further research.","PeriodicalId":14333,"journal":{"name":"International Reviews of Immunology","volume":"35 1","pages":"1-14"},"PeriodicalIF":4.3000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Understanding innate and adaptive responses during radiation combined burn injuries.\",\"authors\":\"Rishav Kumar,Ajay Kumar Sharma,Kirti,Aman Kalonia,Priyanka Shaw,M H Yashvarddhan,Arpana Vibhuti,Sandeep Kumar Shukla\",\"doi\":\"10.1080/08830185.2024.2402023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The occurrence of incidents involving radiation-combined burn injuries (RCBI) poses a significant risk to public health. Understanding the immunological and physiological responses associated with such injuries is crucial for developing care triage to counter the mortality that occurs due to the synergistic effects of radiation and burn injuries. The core focus of this narrative review lies in unraveling the immune response against RCBI. Langerhans cells, mast cells, keratinocytes, and fibroblasts, which induce innate immunity, have been explored for their response to radiation, burns, and combined injuries. In the case of adaptive immune response, exploring behavioral changes in T regulatory (Treg) cells, T helper cells (Th1, Th2, and Th17), and immunoglobulin results in delayed healing compared to burn and radiation injury. The review also includes the function of complement system components such as neutrophils, acute phase proteins (CRP, C3, and C5), and cytokines for their role in RCBI. Combined insults resulting in a reduction in the cell population of immune cells display variation in response based on radiation doses, burn injury types, and their intrinsic radiosensitivity. The lack of approved countermeasures against RCBI poses a significant challenge. Drug repurposing might help to balance immune cell alteration, resulting in fast recovery and decreasing mortality, which gives it clinical significance for its implication on the site of such incidence. However, the exact immune response in RCBI remains insufficiently explored in pre-clinical and clinical stages, which might be due to the non-availability of in vitro models, standard animal models, or human subjects, warranting further research.\",\"PeriodicalId\":14333,\"journal\":{\"name\":\"International Reviews of Immunology\",\"volume\":\"35 1\",\"pages\":\"1-14\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Reviews of Immunology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/08830185.2024.2402023\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Reviews of Immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/08830185.2024.2402023","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Understanding innate and adaptive responses during radiation combined burn injuries.
The occurrence of incidents involving radiation-combined burn injuries (RCBI) poses a significant risk to public health. Understanding the immunological and physiological responses associated with such injuries is crucial for developing care triage to counter the mortality that occurs due to the synergistic effects of radiation and burn injuries. The core focus of this narrative review lies in unraveling the immune response against RCBI. Langerhans cells, mast cells, keratinocytes, and fibroblasts, which induce innate immunity, have been explored for their response to radiation, burns, and combined injuries. In the case of adaptive immune response, exploring behavioral changes in T regulatory (Treg) cells, T helper cells (Th1, Th2, and Th17), and immunoglobulin results in delayed healing compared to burn and radiation injury. The review also includes the function of complement system components such as neutrophils, acute phase proteins (CRP, C3, and C5), and cytokines for their role in RCBI. Combined insults resulting in a reduction in the cell population of immune cells display variation in response based on radiation doses, burn injury types, and their intrinsic radiosensitivity. The lack of approved countermeasures against RCBI poses a significant challenge. Drug repurposing might help to balance immune cell alteration, resulting in fast recovery and decreasing mortality, which gives it clinical significance for its implication on the site of such incidence. However, the exact immune response in RCBI remains insufficiently explored in pre-clinical and clinical stages, which might be due to the non-availability of in vitro models, standard animal models, or human subjects, warranting further research.
期刊介绍:
This review journal provides the most current information on basic and translational research in immunology and related fields. In addition to invited reviews, the journal accepts for publication articles and editorials on relevant topics proposed by contributors. Each issue of International Reviews of Immunology contains both solicited and unsolicited review articles, editorials, and ''In-this-Issue'' highlights. The journal also hosts reviews that position the authors'' original work relative to advances in a given field, bridging the gap between annual reviews and the original research articles.
This review series is relevant to all immunologists, molecular biologists, microbiologists, translational scientists, industry researchers, and physicians who work in basic and clinical immunology, inflammatory and allergic diseases, vaccines, and additional topics relevant to medical research and drug development that connect immunology to disciplines such as oncology, cardiovascular disease, and metabolic disorders.
Covered in International Reviews of Immunology: Basic and developmental immunology (innate and adaptive immunity; inflammation; and tumor and microbial immunology); Clinical research (mechanisms of disease in man pertaining to infectious diseases, autoimmunity, allergy, oncology / immunology); and Translational research (relevant to biomarkers, diagnostics, vaccines, and drug development).