学生在 COVID-19 大流行前后翻转式高年级物理化学课程中的成功与体验

IF 2.6 2区 教育学 Q1 EDUCATION & EDUCATIONAL RESEARCH Chemistry Education Research and Practice Pub Date : 2024-08-24 DOI:10.1039/d4rp00074a
Trisha M Gomez, Charmaine Luciano, Tam Nguyen, Sachel M. Villafane, Michael N Groves
{"title":"学生在 COVID-19 大流行前后翻转式高年级物理化学课程中的成功与体验","authors":"Trisha M Gomez, Charmaine Luciano, Tam Nguyen, Sachel M. Villafane, Michael N Groves","doi":"10.1039/d4rp00074a","DOIUrl":null,"url":null,"abstract":"A flipped classroom is typically one where some of the instruction occurs asynchronously prior to the scheduled synchronous meeting between students and the instructor. Since 2000, they have gained substantial popularity especially in STEM fields where they have been shown to have increased exam scores and reduce the number of students who fail. In the university setting, many of these studies have been performed in lower division courses. Very few studies have been conducted in senior physical chemistry courses resulting in very little data being collected on this instructional technique at this level. The purpose of this study is to assess student outcomes when flipped classroom techniques are implemented in a senior physical chemistry course. In our flipped classroom, students were expected to watch lecture videos and complete preparation exercises created by the authors prior to coming to class. Then in class, a just in time teaching model was employed prior to students working in groups to complete activities created by the authors. Seven quizzes were performed individually and in groups while three midterms and a cumulative final exam were performed individually. Grade, student opinion questionnaires and survey data collected over seven semesters from Fall 2017 to Spring 2022 will be presented. Our findings indicate that there was only one semester out of seven where the average GPA of the students was significantly higher than the control class which was taught in a traditional lecture style. According to student surveys, the students focused on the importance of the preparation questions and dismissed the importance of completing activity/homework problems given that preparation activities were assigned credit while homework was not. Given that the in-class activities/homework questions resembled the material in assessments like quizzes, midterms and final exams, while preparation questions were scaffolded formative problems meant to introduce students to the concepts to be studied during the synchronous lecture, an important link between course concepts and material on summative assessments was not made. Future changes to address this issue will be discussed as well as how COVID-19 affected students during the pandemic as well as flipped classroom instruction.","PeriodicalId":69,"journal":{"name":"Chemistry Education Research and Practice","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Student Success and Experience in a Flipped, Senior Physical Chemistry Course Spanning Before and After the COVID-19 Pandemic\",\"authors\":\"Trisha M Gomez, Charmaine Luciano, Tam Nguyen, Sachel M. Villafane, Michael N Groves\",\"doi\":\"10.1039/d4rp00074a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A flipped classroom is typically one where some of the instruction occurs asynchronously prior to the scheduled synchronous meeting between students and the instructor. Since 2000, they have gained substantial popularity especially in STEM fields where they have been shown to have increased exam scores and reduce the number of students who fail. In the university setting, many of these studies have been performed in lower division courses. Very few studies have been conducted in senior physical chemistry courses resulting in very little data being collected on this instructional technique at this level. The purpose of this study is to assess student outcomes when flipped classroom techniques are implemented in a senior physical chemistry course. In our flipped classroom, students were expected to watch lecture videos and complete preparation exercises created by the authors prior to coming to class. Then in class, a just in time teaching model was employed prior to students working in groups to complete activities created by the authors. Seven quizzes were performed individually and in groups while three midterms and a cumulative final exam were performed individually. Grade, student opinion questionnaires and survey data collected over seven semesters from Fall 2017 to Spring 2022 will be presented. Our findings indicate that there was only one semester out of seven where the average GPA of the students was significantly higher than the control class which was taught in a traditional lecture style. According to student surveys, the students focused on the importance of the preparation questions and dismissed the importance of completing activity/homework problems given that preparation activities were assigned credit while homework was not. Given that the in-class activities/homework questions resembled the material in assessments like quizzes, midterms and final exams, while preparation questions were scaffolded formative problems meant to introduce students to the concepts to be studied during the synchronous lecture, an important link between course concepts and material on summative assessments was not made. Future changes to address this issue will be discussed as well as how COVID-19 affected students during the pandemic as well as flipped classroom instruction.\",\"PeriodicalId\":69,\"journal\":{\"name\":\"Chemistry Education Research and Practice\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry Education Research and Practice\",\"FirstCategoryId\":\"95\",\"ListUrlMain\":\"https://doi.org/10.1039/d4rp00074a\",\"RegionNum\":2,\"RegionCategory\":\"教育学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"EDUCATION & EDUCATIONAL RESEARCH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry Education Research and Practice","FirstCategoryId":"95","ListUrlMain":"https://doi.org/10.1039/d4rp00074a","RegionNum":2,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
引用次数: 0

摘要

翻转课堂通常是指在学生与教师预定的同步会议之前,以异步方式进行部分教学。自 2000 年以来,翻转课堂大受欢迎,尤其是在科学、技术、工程和数学领域,事实证明,翻转课堂提高了考试分数,减少了不及格学生的人数。在大学环境中,许多此类研究都是在低年级课程中进行的。很少有研究是在高年级物理化学课程中进行的,因此在这一阶段收集到的有关这种教学方法的数据很少。本研究的目的是评估在高年级物理化学课程中实施翻转课堂技术后学生的学习效果。在我们的翻转课堂中,学生在上课前要观看授课视频并完成作者制作的预习练习。然后在课堂上,采用及时教学模式,让学生分组完成作者设计的活动。七次测验以个人和小组为单位进行,三次期中考试和一次累积期末考试以个人为单位进行。将介绍从 2017 年秋季到 2022 年春季的七个学期中收集到的成绩、学生意见问卷和调查数据。我们的研究结果表明,在七个学期中,只有一个学期学生的平均 GPA 明显高于采用传统授课方式的对照班。根据学生调查,由于预习活动有学分,而家庭作业没有学分,因此学生们更关注预习问题的重要性,而忽视了完成活动/家庭作业问题的重要性。鉴于课堂活动/家庭作业问题与测验、期中考试和期末考试等评估材料相似,而准备问题是支架式形成性问题,旨在向学生介绍同步授课期间要学习的概念,因此课程概念与终结性评估材料之间没有建立重要联系。我们将讨论未来为解决这一问题而做出的改变,以及 COVID-19 在大流行期间对学生的影响和翻转课堂教学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Student Success and Experience in a Flipped, Senior Physical Chemistry Course Spanning Before and After the COVID-19 Pandemic
A flipped classroom is typically one where some of the instruction occurs asynchronously prior to the scheduled synchronous meeting between students and the instructor. Since 2000, they have gained substantial popularity especially in STEM fields where they have been shown to have increased exam scores and reduce the number of students who fail. In the university setting, many of these studies have been performed in lower division courses. Very few studies have been conducted in senior physical chemistry courses resulting in very little data being collected on this instructional technique at this level. The purpose of this study is to assess student outcomes when flipped classroom techniques are implemented in a senior physical chemistry course. In our flipped classroom, students were expected to watch lecture videos and complete preparation exercises created by the authors prior to coming to class. Then in class, a just in time teaching model was employed prior to students working in groups to complete activities created by the authors. Seven quizzes were performed individually and in groups while three midterms and a cumulative final exam were performed individually. Grade, student opinion questionnaires and survey data collected over seven semesters from Fall 2017 to Spring 2022 will be presented. Our findings indicate that there was only one semester out of seven where the average GPA of the students was significantly higher than the control class which was taught in a traditional lecture style. According to student surveys, the students focused on the importance of the preparation questions and dismissed the importance of completing activity/homework problems given that preparation activities were assigned credit while homework was not. Given that the in-class activities/homework questions resembled the material in assessments like quizzes, midterms and final exams, while preparation questions were scaffolded formative problems meant to introduce students to the concepts to be studied during the synchronous lecture, an important link between course concepts and material on summative assessments was not made. Future changes to address this issue will be discussed as well as how COVID-19 affected students during the pandemic as well as flipped classroom instruction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.80
自引率
26.70%
发文量
64
审稿时长
6-12 weeks
期刊介绍: The journal for teachers, researchers and other practitioners in chemistry education.
期刊最新文献
Guidance on the data availability statement requirement in CERP The use of mobile technology in abductive inquiry-based teaching and learning of chemical bonding Improving the teaching of entropy and the second law of thermodynamics: a systematic review with meta-analysis “I’m still here and I want them to know that”: experiences of chemists with concealable identities in undergraduate research A lack of impact of pedagogy (peer-led team learning compared with didactic instruction) on long-term student knowledge of chemical equilibrium
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1