回顾当前的水培食品生产实践和生物电化学系统的潜在作用

IF 8.6 1区 环境科学与生态学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Reviews in Environmental Science and Bio/Technology Pub Date : 2024-08-28 DOI:10.1007/s11157-024-09699-y
Shuyao Wang, Yehuda Kleiner, Shawn M. Clark, Vijaya Raghavan, Boris Tartakovsky
{"title":"回顾当前的水培食品生产实践和生物电化学系统的潜在作用","authors":"Shuyao Wang,&nbsp;Yehuda Kleiner,&nbsp;Shawn M. Clark,&nbsp;Vijaya Raghavan,&nbsp;Boris Tartakovsky","doi":"10.1007/s11157-024-09699-y","DOIUrl":null,"url":null,"abstract":"<div><p>Hydroponic cultivation is an efficient, resource-saving technology that produces high yields of high-quality products per unit area without soil. While this technology can save water and fertilisers, water recirculation increases the accumulation of root exudates known to be toxic to the plant, causing growth inhibition. The usage of bioelectrochemical systems (BESs) is well-documented for wastewater treatment, desalination, contamination remediation, bioelectricity generation, etc. In this review we explore the issues associated with the usage of traditional approaches in detecting and removing the phytotoxic substances exudated from plant roots. Furthermore, we investigate the prospects of deploying BESs in hydroponic systems and highlight potential benefits and challenges. The application, feasibility and scalability of BES-hydroponic systems, as well as the possibility of integration with other technologies are all critically discussed. It is concluded that the use of BESs for hydroponic wastewater treatment and for real-time plant growth monitoring represents a novel and valuable strategy. This approach has the potential to overcome limitations of the existing treatment methods and contribute to the advancement of sustainable agriculture.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":754,"journal":{"name":"Reviews in Environmental Science and Bio/Technology","volume":"23 3","pages":"897 - 921"},"PeriodicalIF":8.6000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11157-024-09699-y.pdf","citationCount":"0","resultStr":"{\"title\":\"Review of current hydroponic food production practices and the potential role of bioelectrochemical systems\",\"authors\":\"Shuyao Wang,&nbsp;Yehuda Kleiner,&nbsp;Shawn M. Clark,&nbsp;Vijaya Raghavan,&nbsp;Boris Tartakovsky\",\"doi\":\"10.1007/s11157-024-09699-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Hydroponic cultivation is an efficient, resource-saving technology that produces high yields of high-quality products per unit area without soil. While this technology can save water and fertilisers, water recirculation increases the accumulation of root exudates known to be toxic to the plant, causing growth inhibition. The usage of bioelectrochemical systems (BESs) is well-documented for wastewater treatment, desalination, contamination remediation, bioelectricity generation, etc. In this review we explore the issues associated with the usage of traditional approaches in detecting and removing the phytotoxic substances exudated from plant roots. Furthermore, we investigate the prospects of deploying BESs in hydroponic systems and highlight potential benefits and challenges. The application, feasibility and scalability of BES-hydroponic systems, as well as the possibility of integration with other technologies are all critically discussed. It is concluded that the use of BESs for hydroponic wastewater treatment and for real-time plant growth monitoring represents a novel and valuable strategy. This approach has the potential to overcome limitations of the existing treatment methods and contribute to the advancement of sustainable agriculture.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":754,\"journal\":{\"name\":\"Reviews in Environmental Science and Bio/Technology\",\"volume\":\"23 3\",\"pages\":\"897 - 921\"},\"PeriodicalIF\":8.6000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11157-024-09699-y.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reviews in Environmental Science and Bio/Technology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11157-024-09699-y\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in Environmental Science and Bio/Technology","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s11157-024-09699-y","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

水耕栽培是一种高效、节省资源的技术,在单位面积内无需土壤即可生产出高产优质的产品。虽然这种技术可以节约用水和肥料,但水的循环会增加已知对植物有毒的根部渗出物的积累,导致生长受抑制。生物电化学系统(BES)在废水处理、海水淡化、污染修复、生物发电等方面的应用已得到充分证实。在这篇综述中,我们探讨了使用传统方法检测和去除植物根部渗出的植物毒性物质的相关问题。此外,我们还探讨了在水培系统中部署生物能源系统的前景,并强调了潜在的优势和挑战。我们对 BES-水培系统的应用、可行性和可扩展性,以及与其他技术整合的可能性进行了认真讨论。最后得出的结论是,使用 BES 进行水培废水处理和实时植物生长监测是一种新颖而有价值的策略。这种方法有可能克服现有处理方法的局限性,促进可持续农业的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Review of current hydroponic food production practices and the potential role of bioelectrochemical systems

Hydroponic cultivation is an efficient, resource-saving technology that produces high yields of high-quality products per unit area without soil. While this technology can save water and fertilisers, water recirculation increases the accumulation of root exudates known to be toxic to the plant, causing growth inhibition. The usage of bioelectrochemical systems (BESs) is well-documented for wastewater treatment, desalination, contamination remediation, bioelectricity generation, etc. In this review we explore the issues associated with the usage of traditional approaches in detecting and removing the phytotoxic substances exudated from plant roots. Furthermore, we investigate the prospects of deploying BESs in hydroponic systems and highlight potential benefits and challenges. The application, feasibility and scalability of BES-hydroponic systems, as well as the possibility of integration with other technologies are all critically discussed. It is concluded that the use of BESs for hydroponic wastewater treatment and for real-time plant growth monitoring represents a novel and valuable strategy. This approach has the potential to overcome limitations of the existing treatment methods and contribute to the advancement of sustainable agriculture.

Graphical abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Reviews in Environmental Science and Bio/Technology
Reviews in Environmental Science and Bio/Technology Environmental Science-Waste Management and Disposal
CiteScore
25.00
自引率
1.40%
发文量
37
审稿时长
4.5 months
期刊介绍: Reviews in Environmental Science and Bio/Technology is a publication that offers easily comprehensible, reliable, and well-rounded perspectives and evaluations in the realm of environmental science and (bio)technology. It disseminates the most recent progressions and timely compilations of groundbreaking scientific discoveries, technological advancements, practical applications, policy developments, and societal concerns encompassing all facets of environmental science and (bio)technology. Furthermore, it tackles broader aspects beyond the natural sciences, incorporating subjects such as education, funding, policy-making, intellectual property, and societal influence.
期刊最新文献
The potential of biochar incorporation into agricultural soils to promote sustainable agriculture: insights from soil health, crop productivity, greenhouse gas emission mitigation and feasibility perspectives—a critical review Chemical interactions under the bark: bark-, ambrosia-, and wood-boring beetles and their microbial associates Biochar: a potential and green adsorbent for antibiotics removal from aqueous solution Unveiling the evolution of anaerobic membrane bioreactors: applications, fouling issues, and future perspective in wastewater treatment Correction to: Harnessing green tide Ulva biomass for carbon dioxide sequestration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1