{"title":"利用筋膜启发的非线性约束生成基于关节角度协同作用的仿人机器人动作","authors":"Shiqi Yu, Yoshihiro Nakata, Yutaka Nakamura, Hiroshi Ishiguro","doi":"10.1017/s0263574724000961","DOIUrl":null,"url":null,"abstract":"<p>When generating simultaneous joint movements of a humanoid with multiple degrees of freedom to replicate human-like movements, the approach of joint synergy can facilitate the generation of whole-body robotic movement with a reduced number of control inputs. However, the trade-off of minimizing control inputs and keeping characteristics of movements makes it difficult to improve movement performance in a simple control manner. In this paper, we introduce an approach by connecting and constraining these joints. It is inspired by the fascia network of the human body, which constrains the whole-body movements of a human. Compared to when only joint synergy is used, the effectiveness of the proposed method is verified by calculating the errors of joint positions of generated movements and human movements. The paper provides a detailed exploration of the proposed method, presenting simulation-experimental results that affirm its effectiveness in generated movements that closely resemble human movements. Furthermore, we provide one possible method on how these concepts can be implemented in actual robotic hardware, offering a pathway to improve movement control in humanoid robots within their mechanical limitations.</p>","PeriodicalId":49593,"journal":{"name":"Robotica","volume":"12 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Joint angle synergy-based humanoid robot motion generation with fascia-inspired nonlinear constraints\",\"authors\":\"Shiqi Yu, Yoshihiro Nakata, Yutaka Nakamura, Hiroshi Ishiguro\",\"doi\":\"10.1017/s0263574724000961\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>When generating simultaneous joint movements of a humanoid with multiple degrees of freedom to replicate human-like movements, the approach of joint synergy can facilitate the generation of whole-body robotic movement with a reduced number of control inputs. However, the trade-off of minimizing control inputs and keeping characteristics of movements makes it difficult to improve movement performance in a simple control manner. In this paper, we introduce an approach by connecting and constraining these joints. It is inspired by the fascia network of the human body, which constrains the whole-body movements of a human. Compared to when only joint synergy is used, the effectiveness of the proposed method is verified by calculating the errors of joint positions of generated movements and human movements. The paper provides a detailed exploration of the proposed method, presenting simulation-experimental results that affirm its effectiveness in generated movements that closely resemble human movements. Furthermore, we provide one possible method on how these concepts can be implemented in actual robotic hardware, offering a pathway to improve movement control in humanoid robots within their mechanical limitations.</p>\",\"PeriodicalId\":49593,\"journal\":{\"name\":\"Robotica\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Robotica\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1017/s0263574724000961\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotica","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1017/s0263574724000961","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ROBOTICS","Score":null,"Total":0}
When generating simultaneous joint movements of a humanoid with multiple degrees of freedom to replicate human-like movements, the approach of joint synergy can facilitate the generation of whole-body robotic movement with a reduced number of control inputs. However, the trade-off of minimizing control inputs and keeping characteristics of movements makes it difficult to improve movement performance in a simple control manner. In this paper, we introduce an approach by connecting and constraining these joints. It is inspired by the fascia network of the human body, which constrains the whole-body movements of a human. Compared to when only joint synergy is used, the effectiveness of the proposed method is verified by calculating the errors of joint positions of generated movements and human movements. The paper provides a detailed exploration of the proposed method, presenting simulation-experimental results that affirm its effectiveness in generated movements that closely resemble human movements. Furthermore, we provide one possible method on how these concepts can be implemented in actual robotic hardware, offering a pathway to improve movement control in humanoid robots within their mechanical limitations.
期刊介绍:
Robotica is a forum for the multidisciplinary subject of robotics and encourages developments, applications and research in this important field of automation and robotics with regard to industry, health, education and economic and social aspects of relevance. Coverage includes activities in hostile environments, applications in the service and manufacturing industries, biological robotics, dynamics and kinematics involved in robot design and uses, on-line robots, robot task planning, rehabilitation robotics, sensory perception, software in the widest sense, particularly in respect of programming languages and links with CAD/CAM systems, telerobotics and various other areas. In addition, interest is focused on various Artificial Intelligence topics of theoretical and practical interest.