{"title":"利用人工神经网络模型预测石油中间馏分的闪点","authors":"Kahina Bedda","doi":"10.1134/S0965544124040066","DOIUrl":null,"url":null,"abstract":"<p>An artificial neural network (ANN) model of a multilayer perceptron-type was developed to predict flash points of petroleum middle distillates. The ANN model was designed using 252 experimental data points taken from the literature. The properties of the distillates, namely, specific gravity and distillation temperatures, were the input parameters of the model. The training of the network was carried out using the Levenberg– Marquardt backpropagation algorithm and the early stopping technique. A comparison of the statistical parameters of different networks made it possible to determine the optimal number of neurons in the hidden layer with the best weight and bias values. The network containing nine hidden neurons was selected as the best predictive model. The ANN model as well as the Alqaheem–Riazi’s model was evaluated for the prediction of flash points by a statistical analysis based on the calculation of the mean square error, Pearson correlation coefficient, coefficient of determination, absolute percentage errors, and the mean absolute percentage error. The ANN model provided higher prediction accuracy over a wide distillation range than the Alqaheem–Riazi’s model. The developed ANN model is a reliable and fast tool for the low-cost estimation of flash points of petroleum middle distillates.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of Flash Points of Petroleum Middle Distillates Using an Artificial Neural Network Model\",\"authors\":\"Kahina Bedda\",\"doi\":\"10.1134/S0965544124040066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>An artificial neural network (ANN) model of a multilayer perceptron-type was developed to predict flash points of petroleum middle distillates. The ANN model was designed using 252 experimental data points taken from the literature. The properties of the distillates, namely, specific gravity and distillation temperatures, were the input parameters of the model. The training of the network was carried out using the Levenberg– Marquardt backpropagation algorithm and the early stopping technique. A comparison of the statistical parameters of different networks made it possible to determine the optimal number of neurons in the hidden layer with the best weight and bias values. The network containing nine hidden neurons was selected as the best predictive model. The ANN model as well as the Alqaheem–Riazi’s model was evaluated for the prediction of flash points by a statistical analysis based on the calculation of the mean square error, Pearson correlation coefficient, coefficient of determination, absolute percentage errors, and the mean absolute percentage error. The ANN model provided higher prediction accuracy over a wide distillation range than the Alqaheem–Riazi’s model. The developed ANN model is a reliable and fast tool for the low-cost estimation of flash points of petroleum middle distillates.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0965544124040066\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0965544124040066","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
摘要 开发了一种多层感知器型人工神经网络(ANN)模型,用于预测石油中间馏分的闪点。ANN 模型是利用文献中的 252 个实验数据点设计的。馏分油的特性,即比重和馏分温度,是模型的输入参数。使用 Levenberg- Marquardt 反向传播算法和早期停止技术对网络进行了训练。通过比较不同网络的统计参数,确定了具有最佳权值和偏置值的隐层神经元的最佳数量。包含九个隐藏神经元的网络被选为最佳预测模型。通过计算均方误差、皮尔逊相关系数、决定系数、绝对百分比误差和平均绝对百分比误差等统计分析,对 ANN 模型和 Alqaheem-Riazi 模型进行了闪光点预测评估。与 Alqaheem-Riazi 模型相比,ANN 模型在较宽的蒸馏范围内提供了更高的预测精度。所开发的 ANN 模型是低成本估算石油中间馏分闪点的可靠而快速的工具。
Prediction of Flash Points of Petroleum Middle Distillates Using an Artificial Neural Network Model
An artificial neural network (ANN) model of a multilayer perceptron-type was developed to predict flash points of petroleum middle distillates. The ANN model was designed using 252 experimental data points taken from the literature. The properties of the distillates, namely, specific gravity and distillation temperatures, were the input parameters of the model. The training of the network was carried out using the Levenberg– Marquardt backpropagation algorithm and the early stopping technique. A comparison of the statistical parameters of different networks made it possible to determine the optimal number of neurons in the hidden layer with the best weight and bias values. The network containing nine hidden neurons was selected as the best predictive model. The ANN model as well as the Alqaheem–Riazi’s model was evaluated for the prediction of flash points by a statistical analysis based on the calculation of the mean square error, Pearson correlation coefficient, coefficient of determination, absolute percentage errors, and the mean absolute percentage error. The ANN model provided higher prediction accuracy over a wide distillation range than the Alqaheem–Riazi’s model. The developed ANN model is a reliable and fast tool for the low-cost estimation of flash points of petroleum middle distillates.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.