利用人工神经网络模型预测石油中间馏分的闪点

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-08-13 DOI:10.1134/S0965544124040066
Kahina Bedda
{"title":"利用人工神经网络模型预测石油中间馏分的闪点","authors":"Kahina Bedda","doi":"10.1134/S0965544124040066","DOIUrl":null,"url":null,"abstract":"<p>An artificial neural network (ANN) model of a multilayer perceptron-type was developed to predict flash points of petroleum middle distillates. The ANN model was designed using 252 experimental data points taken from the literature. The properties of the distillates, namely, specific gravity and distillation temperatures, were the input parameters of the model. The training of the network was carried out using the Levenberg– Marquardt backpropagation algorithm and the early stopping technique. A comparison of the statistical parameters of different networks made it possible to determine the optimal number of neurons in the hidden layer with the best weight and bias values. The network containing nine hidden neurons was selected as the best predictive model. The ANN model as well as the Alqaheem–Riazi’s model was evaluated for the prediction of flash points by a statistical analysis based on the calculation of the mean square error, Pearson correlation coefficient, coefficient of determination, absolute percentage errors, and the mean absolute percentage error. The ANN model provided higher prediction accuracy over a wide distillation range than the Alqaheem–Riazi’s model. The developed ANN model is a reliable and fast tool for the low-cost estimation of flash points of petroleum middle distillates.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of Flash Points of Petroleum Middle Distillates Using an Artificial Neural Network Model\",\"authors\":\"Kahina Bedda\",\"doi\":\"10.1134/S0965544124040066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>An artificial neural network (ANN) model of a multilayer perceptron-type was developed to predict flash points of petroleum middle distillates. The ANN model was designed using 252 experimental data points taken from the literature. The properties of the distillates, namely, specific gravity and distillation temperatures, were the input parameters of the model. The training of the network was carried out using the Levenberg– Marquardt backpropagation algorithm and the early stopping technique. A comparison of the statistical parameters of different networks made it possible to determine the optimal number of neurons in the hidden layer with the best weight and bias values. The network containing nine hidden neurons was selected as the best predictive model. The ANN model as well as the Alqaheem–Riazi’s model was evaluated for the prediction of flash points by a statistical analysis based on the calculation of the mean square error, Pearson correlation coefficient, coefficient of determination, absolute percentage errors, and the mean absolute percentage error. The ANN model provided higher prediction accuracy over a wide distillation range than the Alqaheem–Riazi’s model. The developed ANN model is a reliable and fast tool for the low-cost estimation of flash points of petroleum middle distillates.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0965544124040066\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0965544124040066","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

摘要 开发了一种多层感知器型人工神经网络(ANN)模型,用于预测石油中间馏分的闪点。ANN 模型是利用文献中的 252 个实验数据点设计的。馏分油的特性,即比重和馏分温度,是模型的输入参数。使用 Levenberg- Marquardt 反向传播算法和早期停止技术对网络进行了训练。通过比较不同网络的统计参数,确定了具有最佳权值和偏置值的隐层神经元的最佳数量。包含九个隐藏神经元的网络被选为最佳预测模型。通过计算均方误差、皮尔逊相关系数、决定系数、绝对百分比误差和平均绝对百分比误差等统计分析,对 ANN 模型和 Alqaheem-Riazi 模型进行了闪光点预测评估。与 Alqaheem-Riazi 模型相比,ANN 模型在较宽的蒸馏范围内提供了更高的预测精度。所开发的 ANN 模型是低成本估算石油中间馏分闪点的可靠而快速的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Prediction of Flash Points of Petroleum Middle Distillates Using an Artificial Neural Network Model

An artificial neural network (ANN) model of a multilayer perceptron-type was developed to predict flash points of petroleum middle distillates. The ANN model was designed using 252 experimental data points taken from the literature. The properties of the distillates, namely, specific gravity and distillation temperatures, were the input parameters of the model. The training of the network was carried out using the Levenberg– Marquardt backpropagation algorithm and the early stopping technique. A comparison of the statistical parameters of different networks made it possible to determine the optimal number of neurons in the hidden layer with the best weight and bias values. The network containing nine hidden neurons was selected as the best predictive model. The ANN model as well as the Alqaheem–Riazi’s model was evaluated for the prediction of flash points by a statistical analysis based on the calculation of the mean square error, Pearson correlation coefficient, coefficient of determination, absolute percentage errors, and the mean absolute percentage error. The ANN model provided higher prediction accuracy over a wide distillation range than the Alqaheem–Riazi’s model. The developed ANN model is a reliable and fast tool for the low-cost estimation of flash points of petroleum middle distillates.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Mentorship in academic musculoskeletal radiology: perspectives from a junior faculty member. Underlying synovial sarcoma undiagnosed for more than 20 years in a patient with regional pain: a case report. Sacrococcygeal chordoma with spontaneous regression due to a large hemorrhagic component. Associations of cumulative voriconazole dose, treatment duration, and alkaline phosphatase with voriconazole-induced periostitis. Can the presence of SLAP-5 lesions be predicted by using the critical shoulder angle in traumatic anterior shoulder instability?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1