利用附近的验潮仪对全球导航卫星系统-红外海平面检索的线性趋势和季节变化进行全球评估

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-08-14 DOI:10.1016/j.asr.2024.08.034
Chang Xu, Xinzhi Wang
{"title":"利用附近的验潮仪对全球导航卫星系统-红外海平面检索的线性趋势和季节变化进行全球评估","authors":"Chang Xu, Xinzhi Wang","doi":"10.1016/j.asr.2024.08.034","DOIUrl":null,"url":null,"abstract":"Global Navigation Satellite System Interferometric Reflectometry (GNSS-IR) sea level retrievals and tide gauges at 40 globally distributed stations spanning from about 4.5 to 18 years are compared on a site-by-site basis, in terms of noise background, rate and seasonal variations by using the weighted least squares estimation (LSE) along with the Maximum likelihood estimation (MLE). The result shows that monthly GNSS-IR data agree well with tide gauges for most stations except the site Tuktoyaktuk, Canada. The mean correlation is 0.95 and the mean root mean square difference is 2.9 cm, respectively. The discrepancies of rate and seasonal amplitude estimates are within ± 1 cm for most stations. We confirm both the two sea level data exhibit temporal correlation, which has a great effect on the rate uncertainty estimates. Akaike Information Criteria (AIC) and Bayesian Information Criteria (BIC) favor Matérn and first-order autoregressive (AR1) the preferred stochastic model for the daily and monthly mean sea level time series, respectively. Owing to the data span dependence for the rate uncertainty estimates, to get an accuracy of sub-mm/yr in linear rate using the weighted LSE, at least 30 years of data (depends on data quality) is required. We recommend using long time series and a proper stochastic model for the rate estimation of sea level.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global assessment of linear trend and seasonal variations of GNSS-IR sea level retrievals with nearby tide gauges\",\"authors\":\"Chang Xu, Xinzhi Wang\",\"doi\":\"10.1016/j.asr.2024.08.034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Global Navigation Satellite System Interferometric Reflectometry (GNSS-IR) sea level retrievals and tide gauges at 40 globally distributed stations spanning from about 4.5 to 18 years are compared on a site-by-site basis, in terms of noise background, rate and seasonal variations by using the weighted least squares estimation (LSE) along with the Maximum likelihood estimation (MLE). The result shows that monthly GNSS-IR data agree well with tide gauges for most stations except the site Tuktoyaktuk, Canada. The mean correlation is 0.95 and the mean root mean square difference is 2.9 cm, respectively. The discrepancies of rate and seasonal amplitude estimates are within ± 1 cm for most stations. We confirm both the two sea level data exhibit temporal correlation, which has a great effect on the rate uncertainty estimates. Akaike Information Criteria (AIC) and Bayesian Information Criteria (BIC) favor Matérn and first-order autoregressive (AR1) the preferred stochastic model for the daily and monthly mean sea level time series, respectively. Owing to the data span dependence for the rate uncertainty estimates, to get an accuracy of sub-mm/yr in linear rate using the weighted LSE, at least 30 years of data (depends on data quality) is required. We recommend using long time series and a proper stochastic model for the rate estimation of sea level.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1016/j.asr.2024.08.034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1016/j.asr.2024.08.034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

通过使用加权最小二乘估计(LSE)和最大似然估计(MLE),对全球导航卫星系统干涉反射测量法(GNSS-IR)海平面检索和全球分布的 40 个站点的验潮仪(时间跨度约 4.5 至 18 年)在噪声背景、速率和季节变化方面进行了逐点比较。结果表明,除加拿大图克托亚克图克站点外,大多数站点的全球导航卫星系统-红外月度数据与验潮仪数据吻合良好。平均相关性为 0.95,平均均方根差为 2.9 厘米。大多数站点的速率和季节振幅估计值的差异在 ± 1 厘米以内。我们确认两个海平面数据都表现出时间相关性,这对速率不确定性估计有很大影响。Akaike 信息准则(AIC)和贝叶斯信息准则(BIC)分别倾向于将 Matérn 和一阶自回归(AR1)作为日平均海平面时间序列和月平均海平面时间序列的首选随机模型。由于速率不确定性估计的数据跨度依赖性,要使用加权 LSE 获得亚毫米/年的线性速率精度,至少需要 30 年的数据(取决于数据质量)。我们建议使用长时间序列和适当的随机模型来估算海平面速率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Global assessment of linear trend and seasonal variations of GNSS-IR sea level retrievals with nearby tide gauges
Global Navigation Satellite System Interferometric Reflectometry (GNSS-IR) sea level retrievals and tide gauges at 40 globally distributed stations spanning from about 4.5 to 18 years are compared on a site-by-site basis, in terms of noise background, rate and seasonal variations by using the weighted least squares estimation (LSE) along with the Maximum likelihood estimation (MLE). The result shows that monthly GNSS-IR data agree well with tide gauges for most stations except the site Tuktoyaktuk, Canada. The mean correlation is 0.95 and the mean root mean square difference is 2.9 cm, respectively. The discrepancies of rate and seasonal amplitude estimates are within ± 1 cm for most stations. We confirm both the two sea level data exhibit temporal correlation, which has a great effect on the rate uncertainty estimates. Akaike Information Criteria (AIC) and Bayesian Information Criteria (BIC) favor Matérn and first-order autoregressive (AR1) the preferred stochastic model for the daily and monthly mean sea level time series, respectively. Owing to the data span dependence for the rate uncertainty estimates, to get an accuracy of sub-mm/yr in linear rate using the weighted LSE, at least 30 years of data (depends on data quality) is required. We recommend using long time series and a proper stochastic model for the rate estimation of sea level.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1