Nitesh Patel, Unnati Joshi, Vijay Patel, Anand Joshi, Ankit D. Oza, Abhinav Kumar, Vladimir Ivanovich Velkin
{"title":"优化用于海水淡化的太阳能真空管集热器系统的性能","authors":"Nitesh Patel, Unnati Joshi, Vijay Patel, Anand Joshi, Ankit D. Oza, Abhinav Kumar, Vladimir Ivanovich Velkin","doi":"10.1002/ep.14467","DOIUrl":null,"url":null,"abstract":"<p>Solar thermal collectors, such as evacuated tube collectors (ETCs), are essential for harnessing renewable energy, yet their efficiency is often hindered by thermal losses and limited heat transfer. This study focuses on enhancing ETC performance for seawater desalination by using nanofluids as heat transfer fluids. These modifications aim to improve heat transfer rates, reduce thermal losses, increase the maximum temperature attainable, and minimize the collector area required. An experimental setup has been developed at Parul University in Vadodara, Gujarat, India. Key parameters such as air mass flow rate, inclination angle, water mass flow rate, nanofluid volume percentage, and screw conveyor speed were optimized to achieve ideal temperature levels. Results indicate that the optimal configuration for steam generation includes a high air mass flow rate and a 40° inclination angle for the ETC. Additionally, a water mass flow rate of 10 LPH and a screw conveyor speed of 30 rpm are crucial for optimal performance. Data collected showed the highest solar energy levels between 12 PM and 1 PM, which significant decreases post this peak period. These findings highlight the potential of nanomaterial-based enhancements in improving the efficiency and cost-effectiveness of solar thermal systems for renewable energy applications.</p>","PeriodicalId":11701,"journal":{"name":"Environmental Progress & Sustainable Energy","volume":"43 6","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing the performance of solar evacuated tube collector systems for seawater desalination\",\"authors\":\"Nitesh Patel, Unnati Joshi, Vijay Patel, Anand Joshi, Ankit D. Oza, Abhinav Kumar, Vladimir Ivanovich Velkin\",\"doi\":\"10.1002/ep.14467\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Solar thermal collectors, such as evacuated tube collectors (ETCs), are essential for harnessing renewable energy, yet their efficiency is often hindered by thermal losses and limited heat transfer. This study focuses on enhancing ETC performance for seawater desalination by using nanofluids as heat transfer fluids. These modifications aim to improve heat transfer rates, reduce thermal losses, increase the maximum temperature attainable, and minimize the collector area required. An experimental setup has been developed at Parul University in Vadodara, Gujarat, India. Key parameters such as air mass flow rate, inclination angle, water mass flow rate, nanofluid volume percentage, and screw conveyor speed were optimized to achieve ideal temperature levels. Results indicate that the optimal configuration for steam generation includes a high air mass flow rate and a 40° inclination angle for the ETC. Additionally, a water mass flow rate of 10 LPH and a screw conveyor speed of 30 rpm are crucial for optimal performance. Data collected showed the highest solar energy levels between 12 PM and 1 PM, which significant decreases post this peak period. These findings highlight the potential of nanomaterial-based enhancements in improving the efficiency and cost-effectiveness of solar thermal systems for renewable energy applications.</p>\",\"PeriodicalId\":11701,\"journal\":{\"name\":\"Environmental Progress & Sustainable Energy\",\"volume\":\"43 6\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Progress & Sustainable Energy\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ep.14467\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Progress & Sustainable Energy","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ep.14467","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Optimizing the performance of solar evacuated tube collector systems for seawater desalination
Solar thermal collectors, such as evacuated tube collectors (ETCs), are essential for harnessing renewable energy, yet their efficiency is often hindered by thermal losses and limited heat transfer. This study focuses on enhancing ETC performance for seawater desalination by using nanofluids as heat transfer fluids. These modifications aim to improve heat transfer rates, reduce thermal losses, increase the maximum temperature attainable, and minimize the collector area required. An experimental setup has been developed at Parul University in Vadodara, Gujarat, India. Key parameters such as air mass flow rate, inclination angle, water mass flow rate, nanofluid volume percentage, and screw conveyor speed were optimized to achieve ideal temperature levels. Results indicate that the optimal configuration for steam generation includes a high air mass flow rate and a 40° inclination angle for the ETC. Additionally, a water mass flow rate of 10 LPH and a screw conveyor speed of 30 rpm are crucial for optimal performance. Data collected showed the highest solar energy levels between 12 PM and 1 PM, which significant decreases post this peak period. These findings highlight the potential of nanomaterial-based enhancements in improving the efficiency and cost-effectiveness of solar thermal systems for renewable energy applications.
期刊介绍:
Environmental Progress , a quarterly publication of the American Institute of Chemical Engineers, reports on critical issues like remediation and treatment of solid or aqueous wastes, air pollution, sustainability, and sustainable energy. Each issue helps chemical engineers (and those in related fields) stay on top of technological advances in all areas associated with the environment through feature articles, updates, book and software reviews, and editorials.