氨替代率、压缩比和点火正时对氢燃料发动机爆震、氮氧化物排放和指示热效率的综合影响

IF 2.1 4区 环境科学与生态学 Q3 ENGINEERING, CHEMICAL Environmental Progress & Sustainable Energy Pub Date : 2024-08-15 DOI:10.1002/ep.14465
Junquan Li, Chengfei Zhao, Zhangjun Tu, Shanxu Cheng, Yuanli Xu
{"title":"氨替代率、压缩比和点火正时对氢燃料发动机爆震、氮氧化物排放和指示热效率的综合影响","authors":"Junquan Li,&nbsp;Chengfei Zhao,&nbsp;Zhangjun Tu,&nbsp;Shanxu Cheng,&nbsp;Yuanli Xu","doi":"10.1002/ep.14465","DOIUrl":null,"url":null,"abstract":"<p>To reduce knock and keeping low NOx emissions and high indicated thermal efficiency (ITE) in a hydrogen fuel engine, the comprehensive effects of ammonia substitution rate (ASR), compression ratio (CR), and ignition timing (IT) on its combustion and its NOx emissions were studied numerically. Based on a four-cylinder gasoline direct injection (GDI) engine, it was modified into an ammonia/hydrogen dual-fuel (AHDF) spark ignition (SI) engine. The simulation was conducted by GT-Power software, and simulation data were validated through experiments. 2500 rpm_50% load was selected for the research. ASR, CR and IT vary from 0% to 20%, 10.5 to 8.5, and −24 to 0°CA ATDC, respectively. The findings indicate that increasing ASR decreases the maximum pressure rise rate (MPRR) and the knock index (KI), improving the ITE, but increasing NOx emissions. Based on 20% ASR, CR was optimized. The findings indicate that decreasing CR reduces the MPRR and KI, but increasing NOx emissions and decreasing the ITE. Finally, based on CR of 9, IT was optimized. The findings indicate that delaying IT reduces the MPRR and KI, but also has a certain impact on NOx emissions and ITE. After compromise consideration, the optimal IT in this study was selected as −9°CA ATDC.</p>","PeriodicalId":11701,"journal":{"name":"Environmental Progress & Sustainable Energy","volume":"43 5","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comprehensive effects of ammonia substitution rate, compression ratio, and ignition timing on knock, NOx emissions and indicated thermal efficiency in a hydrogen fuel engine\",\"authors\":\"Junquan Li,&nbsp;Chengfei Zhao,&nbsp;Zhangjun Tu,&nbsp;Shanxu Cheng,&nbsp;Yuanli Xu\",\"doi\":\"10.1002/ep.14465\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>To reduce knock and keeping low NOx emissions and high indicated thermal efficiency (ITE) in a hydrogen fuel engine, the comprehensive effects of ammonia substitution rate (ASR), compression ratio (CR), and ignition timing (IT) on its combustion and its NOx emissions were studied numerically. Based on a four-cylinder gasoline direct injection (GDI) engine, it was modified into an ammonia/hydrogen dual-fuel (AHDF) spark ignition (SI) engine. The simulation was conducted by GT-Power software, and simulation data were validated through experiments. 2500 rpm_50% load was selected for the research. ASR, CR and IT vary from 0% to 20%, 10.5 to 8.5, and −24 to 0°CA ATDC, respectively. The findings indicate that increasing ASR decreases the maximum pressure rise rate (MPRR) and the knock index (KI), improving the ITE, but increasing NOx emissions. Based on 20% ASR, CR was optimized. The findings indicate that decreasing CR reduces the MPRR and KI, but increasing NOx emissions and decreasing the ITE. Finally, based on CR of 9, IT was optimized. The findings indicate that delaying IT reduces the MPRR and KI, but also has a certain impact on NOx emissions and ITE. After compromise consideration, the optimal IT in this study was selected as −9°CA ATDC.</p>\",\"PeriodicalId\":11701,\"journal\":{\"name\":\"Environmental Progress & Sustainable Energy\",\"volume\":\"43 5\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Progress & Sustainable Energy\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ep.14465\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Progress & Sustainable Energy","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ep.14465","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

为了减少爆震,保持氢燃料发动机的低氮氧化物排放和高指示热效率(ITE),对氨替代率(ASR)、压缩比(CR)和点火正时(IT)对其燃烧和氮氧化物排放的综合影响进行了数值研究。以四缸汽油直喷(GDI)发动机为基础,将其改进为氨氢双燃料(AHDF)火花点火(SI)发动机。模拟由 GT-Power 软件进行,模拟数据通过实验验证。研究选取 2500 rpm_50% 负载进行。ASR、CR 和 IT 分别在 0% 至 20%、10.5 至 8.5 和 -24 至 0°CA ATDC 之间变化。研究结果表明,增加 ASR 会降低最大压力上升率(MPRR)和爆震指数(KI),改善 ITE,但会增加氮氧化物排放量。在 20% ASR 的基础上,对 CR 进行了优化。研究结果表明,降低 CR 会降低 MPRR 和 KI,但会增加氮氧化物排放量,降低 ITE。最后,在 CR 为 9 的基础上,对 IT 进行了优化。结果表明,延迟 IT 可降低 MPRR 和 KI,但对 NOx 排放和 ITE 也有一定影响。经过折中考虑,本研究选择的最佳 IT 为 -9°CA ATDC。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comprehensive effects of ammonia substitution rate, compression ratio, and ignition timing on knock, NOx emissions and indicated thermal efficiency in a hydrogen fuel engine

To reduce knock and keeping low NOx emissions and high indicated thermal efficiency (ITE) in a hydrogen fuel engine, the comprehensive effects of ammonia substitution rate (ASR), compression ratio (CR), and ignition timing (IT) on its combustion and its NOx emissions were studied numerically. Based on a four-cylinder gasoline direct injection (GDI) engine, it was modified into an ammonia/hydrogen dual-fuel (AHDF) spark ignition (SI) engine. The simulation was conducted by GT-Power software, and simulation data were validated through experiments. 2500 rpm_50% load was selected for the research. ASR, CR and IT vary from 0% to 20%, 10.5 to 8.5, and −24 to 0°CA ATDC, respectively. The findings indicate that increasing ASR decreases the maximum pressure rise rate (MPRR) and the knock index (KI), improving the ITE, but increasing NOx emissions. Based on 20% ASR, CR was optimized. The findings indicate that decreasing CR reduces the MPRR and KI, but increasing NOx emissions and decreasing the ITE. Finally, based on CR of 9, IT was optimized. The findings indicate that delaying IT reduces the MPRR and KI, but also has a certain impact on NOx emissions and ITE. After compromise consideration, the optimal IT in this study was selected as −9°CA ATDC.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Progress & Sustainable Energy
Environmental Progress & Sustainable Energy 环境科学-工程:化工
CiteScore
5.00
自引率
3.60%
发文量
231
审稿时长
4.3 months
期刊介绍: Environmental Progress , a quarterly publication of the American Institute of Chemical Engineers, reports on critical issues like remediation and treatment of solid or aqueous wastes, air pollution, sustainability, and sustainable energy. Each issue helps chemical engineers (and those in related fields) stay on top of technological advances in all areas associated with the environment through feature articles, updates, book and software reviews, and editorials.
期刊最新文献
Issue Information - Cover and Table of Contents Issue Information - Info for Authors Comparison of environmental and health acceptability of squatting and sitting toilets: A review Production and recycling of blast furnace slag: A life cycle assessment approach in India Incorporation of trace metals in Hanford waste boehmite mineral phases and dissolution rate impacts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1