MobiFi:LiFi-WiFi 网络中的移动感知、反应式和主动式无线资源管理

IF 4.7 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS IEEE Transactions on Network and Service Management Pub Date : 2024-09-05 DOI:10.1109/TNSM.2024.3455105
Hansini Vijayaraghavan;Wolfgang Kellerer
{"title":"MobiFi:LiFi-WiFi 网络中的移动感知、反应式和主动式无线资源管理","authors":"Hansini Vijayaraghavan;Wolfgang Kellerer","doi":"10.1109/TNSM.2024.3455105","DOIUrl":null,"url":null,"abstract":"This paper presents MobiFi, a framework addressing the challenges in managing LiFi-WiFi heterogeneous networks focusing on mobility-aware resource allocation. Our contributions include introducing a centralized framework incorporating reactive and proactive strategies for resource management in mobile LiFi-only and LiFi-WiFi networks. This framework reacts to current network conditions and proactively anticipates the future, considering user positions, line-of-sight blockages, and channel quality. Recognizing the importance of long-term network performance, particularly for use cases such as video streaming, we tackle the challenge of optimal proactive resource allocation by formulating an optimization problem that integrates access point assignment and wireless resource allocation using the alpha-fairness objective over time. Our proactive strategy significantly outperforms the reactive resource allocation, ensuring 7.7% higher average rate and 63.3% higher minimum user rate for a 10-user LiFi-WiFi network. We employ sophisticated techniques, including a Branch and Bound-based Mixed-Integer solver and a low-complexity, Evolutionary Game Theory-based algorithm to achieve this. Lastly, we introduce a novel approach to simulate errors in predictive user position modeling to assess the robustness of our proactive allocation strategy against real-world uncertainties. The contributions of MobiFi advance the field of resource management in mobile LiFi-WiFi networks, enabling efficiency and reliability.","PeriodicalId":13423,"journal":{"name":"IEEE Transactions on Network and Service Management","volume":"21 6","pages":"6597-6613"},"PeriodicalIF":4.7000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10666849","citationCount":"0","resultStr":"{\"title\":\"MobiFi: Mobility-Aware Reactive and Proactive Wireless Resource Management in LiFi-WiFi Networks\",\"authors\":\"Hansini Vijayaraghavan;Wolfgang Kellerer\",\"doi\":\"10.1109/TNSM.2024.3455105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents MobiFi, a framework addressing the challenges in managing LiFi-WiFi heterogeneous networks focusing on mobility-aware resource allocation. Our contributions include introducing a centralized framework incorporating reactive and proactive strategies for resource management in mobile LiFi-only and LiFi-WiFi networks. This framework reacts to current network conditions and proactively anticipates the future, considering user positions, line-of-sight blockages, and channel quality. Recognizing the importance of long-term network performance, particularly for use cases such as video streaming, we tackle the challenge of optimal proactive resource allocation by formulating an optimization problem that integrates access point assignment and wireless resource allocation using the alpha-fairness objective over time. Our proactive strategy significantly outperforms the reactive resource allocation, ensuring 7.7% higher average rate and 63.3% higher minimum user rate for a 10-user LiFi-WiFi network. We employ sophisticated techniques, including a Branch and Bound-based Mixed-Integer solver and a low-complexity, Evolutionary Game Theory-based algorithm to achieve this. Lastly, we introduce a novel approach to simulate errors in predictive user position modeling to assess the robustness of our proactive allocation strategy against real-world uncertainties. The contributions of MobiFi advance the field of resource management in mobile LiFi-WiFi networks, enabling efficiency and reliability.\",\"PeriodicalId\":13423,\"journal\":{\"name\":\"IEEE Transactions on Network and Service Management\",\"volume\":\"21 6\",\"pages\":\"6597-6613\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10666849\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Network and Service Management\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10666849/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Network and Service Management","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10666849/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了MobiFi,这是一个解决管理wifi - wifi异构网络挑战的框架,专注于移动感知资源分配。我们的贡献包括引入一个集中框架,将被动和主动策略结合起来,用于移动LiFi-only和LiFi-WiFi网络的资源管理。该框架对当前网络条件作出反应,并考虑到用户位置、视距阻塞和信道质量,主动预测未来。认识到长期网络性能的重要性,特别是对于视频流等用例,我们通过制定一个优化问题来解决最优主动资源分配的挑战,该问题集成了接入点分配和无线资源分配,随着时间的推移使用α -公平目标。我们的主动策略显著优于被动资源分配,确保10用户LiFi-WiFi网络的平均速率提高7.7%,最低用户速率提高63.3%。我们采用了复杂的技术,包括基于分支和边界的混合整数求解器和低复杂度的基于进化博弈论的算法来实现这一目标。最后,我们引入了一种新的方法来模拟预测用户位置建模中的误差,以评估我们的主动分配策略对现实世界不确定性的鲁棒性。MobiFi的贡献推动了移动LiFi-WiFi网络资源管理领域的发展,提高了效率和可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MobiFi: Mobility-Aware Reactive and Proactive Wireless Resource Management in LiFi-WiFi Networks
This paper presents MobiFi, a framework addressing the challenges in managing LiFi-WiFi heterogeneous networks focusing on mobility-aware resource allocation. Our contributions include introducing a centralized framework incorporating reactive and proactive strategies for resource management in mobile LiFi-only and LiFi-WiFi networks. This framework reacts to current network conditions and proactively anticipates the future, considering user positions, line-of-sight blockages, and channel quality. Recognizing the importance of long-term network performance, particularly for use cases such as video streaming, we tackle the challenge of optimal proactive resource allocation by formulating an optimization problem that integrates access point assignment and wireless resource allocation using the alpha-fairness objective over time. Our proactive strategy significantly outperforms the reactive resource allocation, ensuring 7.7% higher average rate and 63.3% higher minimum user rate for a 10-user LiFi-WiFi network. We employ sophisticated techniques, including a Branch and Bound-based Mixed-Integer solver and a low-complexity, Evolutionary Game Theory-based algorithm to achieve this. Lastly, we introduce a novel approach to simulate errors in predictive user position modeling to assess the robustness of our proactive allocation strategy against real-world uncertainties. The contributions of MobiFi advance the field of resource management in mobile LiFi-WiFi networks, enabling efficiency and reliability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Network and Service Management
IEEE Transactions on Network and Service Management Computer Science-Computer Networks and Communications
CiteScore
9.30
自引率
15.10%
发文量
325
期刊介绍: IEEE Transactions on Network and Service Management will publish (online only) peerreviewed archival quality papers that advance the state-of-the-art and practical applications of network and service management. Theoretical research contributions (presenting new concepts and techniques) and applied contributions (reporting on experiences and experiments with actual systems) will be encouraged. These transactions will focus on the key technical issues related to: Management Models, Architectures and Frameworks; Service Provisioning, Reliability and Quality Assurance; Management Functions; Enabling Technologies; Information and Communication Models; Policies; Applications and Case Studies; Emerging Technologies and Standards.
期刊最新文献
Table of Contents Table of Contents Guest Editors’ Introduction: Special Issue on Robust and Resilient Future Communication Networks A Novel Adaptive Device-Free Passive Indoor Fingerprinting Localization Under Dynamic Environment HSS: A Memory-Efficient, Accurate, and Fast Network Measurement Framework in Sliding Windows
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1