{"title":"用于二氧化碳吸附的多孔木陶瓷:吸附容量、动力学、等温线和 CO2/N2 选择性","authors":"Xiulei Wang, Xiurong Guo, Wenjun Jiang, Mingxu Jia, Wei Zhang, Zewei Hao, Hanwen Wang, Danfeng Du, Yanlin Zhang, Zhanfeng Qi","doi":"10.1007/s00226-024-01591-w","DOIUrl":null,"url":null,"abstract":"<div><p>The objective of this study was to produce hydrophobic porous wood ceramics as adsorbents for CO<sub>2</sub> through the resin treatment of pine. The prepared samples underwent analysis using various methods to determine their structure and properties. An orthogonal experimental approach was employed to obtain adsorbents with optimal preparation process. The highest adsorption capacity was determined to be 1.36 mmol/g at a temperature of 30 ℃ and a CO<sub>2</sub> concentration of 15 vol%. The effect of temperature on the microstructure of wood ceramics was studied by characterization. Increasing temperatures adversely affected the adsorption capacity. Nevertheless, the hydrophobic nature of wood ceramics resulted in little impact of humidity on CO<sub>2</sub> absorption. The CO<sub>2</sub> adsorption kinetics of wood ceramics were analyzed using kinetic studies, which demonstrated that the kinetics can be accurately fitted by both the pseudo-first-order and Avrami models. The findings of the adsorption isotherm analysis showed that the Langmuir model fit was optimal. Following 30 cycles of adsorption-desorption in the presence of simulated gas, the CO<sub>2</sub> sorption capacity of the wood ceramics was maintained at over 90%. In terms of CO<sub>2</sub>/N<sub>2</sub> selectivity, the wood ceramics showed a clear preference for CO<sub>2</sub>, especially at 30 °C, where the CO<sub>2</sub>/N<sub>2</sub> selectivity ratio reached 24.50.</p></div>","PeriodicalId":810,"journal":{"name":"Wood Science and Technology","volume":"58 5-6","pages":"1797 - 1820"},"PeriodicalIF":3.1000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Porous wood ceramics for CO2 adsorption: adsorption capacity, kinetics, isotherms and CO2/N2 selectivity\",\"authors\":\"Xiulei Wang, Xiurong Guo, Wenjun Jiang, Mingxu Jia, Wei Zhang, Zewei Hao, Hanwen Wang, Danfeng Du, Yanlin Zhang, Zhanfeng Qi\",\"doi\":\"10.1007/s00226-024-01591-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The objective of this study was to produce hydrophobic porous wood ceramics as adsorbents for CO<sub>2</sub> through the resin treatment of pine. The prepared samples underwent analysis using various methods to determine their structure and properties. An orthogonal experimental approach was employed to obtain adsorbents with optimal preparation process. The highest adsorption capacity was determined to be 1.36 mmol/g at a temperature of 30 ℃ and a CO<sub>2</sub> concentration of 15 vol%. The effect of temperature on the microstructure of wood ceramics was studied by characterization. Increasing temperatures adversely affected the adsorption capacity. Nevertheless, the hydrophobic nature of wood ceramics resulted in little impact of humidity on CO<sub>2</sub> absorption. The CO<sub>2</sub> adsorption kinetics of wood ceramics were analyzed using kinetic studies, which demonstrated that the kinetics can be accurately fitted by both the pseudo-first-order and Avrami models. The findings of the adsorption isotherm analysis showed that the Langmuir model fit was optimal. Following 30 cycles of adsorption-desorption in the presence of simulated gas, the CO<sub>2</sub> sorption capacity of the wood ceramics was maintained at over 90%. In terms of CO<sub>2</sub>/N<sub>2</sub> selectivity, the wood ceramics showed a clear preference for CO<sub>2</sub>, especially at 30 °C, where the CO<sub>2</sub>/N<sub>2</sub> selectivity ratio reached 24.50.</p></div>\",\"PeriodicalId\":810,\"journal\":{\"name\":\"Wood Science and Technology\",\"volume\":\"58 5-6\",\"pages\":\"1797 - 1820\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wood Science and Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00226-024-01591-w\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wood Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s00226-024-01591-w","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
Porous wood ceramics for CO2 adsorption: adsorption capacity, kinetics, isotherms and CO2/N2 selectivity
The objective of this study was to produce hydrophobic porous wood ceramics as adsorbents for CO2 through the resin treatment of pine. The prepared samples underwent analysis using various methods to determine their structure and properties. An orthogonal experimental approach was employed to obtain adsorbents with optimal preparation process. The highest adsorption capacity was determined to be 1.36 mmol/g at a temperature of 30 ℃ and a CO2 concentration of 15 vol%. The effect of temperature on the microstructure of wood ceramics was studied by characterization. Increasing temperatures adversely affected the adsorption capacity. Nevertheless, the hydrophobic nature of wood ceramics resulted in little impact of humidity on CO2 absorption. The CO2 adsorption kinetics of wood ceramics were analyzed using kinetic studies, which demonstrated that the kinetics can be accurately fitted by both the pseudo-first-order and Avrami models. The findings of the adsorption isotherm analysis showed that the Langmuir model fit was optimal. Following 30 cycles of adsorption-desorption in the presence of simulated gas, the CO2 sorption capacity of the wood ceramics was maintained at over 90%. In terms of CO2/N2 selectivity, the wood ceramics showed a clear preference for CO2, especially at 30 °C, where the CO2/N2 selectivity ratio reached 24.50.
期刊介绍:
Wood Science and Technology publishes original scientific research results and review papers covering the entire field of wood material science, wood components and wood based products. Subjects are wood biology and wood quality, wood physics and physical technologies, wood chemistry and chemical technologies. Latest advances in areas such as cell wall and wood formation; structural and chemical composition of wood and wood composites and their property relations; physical, mechanical and chemical characterization and relevant methodological developments, and microbiological degradation of wood and wood based products are reported. Topics related to wood technology include machining, gluing, and finishing, composite technology, wood modification, wood mechanics, creep and rheology, and the conversion of wood into pulp and biorefinery products.