{"title":"基于 DESO 的无模型自适应滑模控制方案及其自动化应用","authors":"Xiaohua Wei, Zhen Sui, Hanzhou Peng, Feng Xu, Jianliang Xu, Yulong Wang","doi":"10.3390/pr12091950","DOIUrl":null,"url":null,"abstract":"This paper addresses a class of uncertain nonlinear systems with disturbances that are challenging to model by proposing a novel model-free adaptive sliding mode control (MFASMC) scheme based on a discrete-time extended state observer (DESO). Initially, leveraging the pseudo partial derivative (PPD) concept in the model-free adaptive control (MFAC) framework, the discrete-time nonlinear model is converted into a full-form dynamic linearization (FFDL) model. Secondly, using the FFDL data model, a discrete sliding mode controller is designed. A discrete integral sliding mode surface is chosen to mitigate chattering during the reaching phase, and a hyperbolic tangent function with minimal slope variation is selected for smoother switching control. Furthermore, a DESO is designed to estimate uncertainties in the discrete system, enabling real-time compensation for the controller. Finally, a genetic optimization algorithm is employed for parameter tuning to minimize the time cost associated with selecting control parameters. The design process of this scheme relies solely on the data of the controlled system, without depending on a mathematical model. The proposed DESO-MFASMC scheme is tested through simulations using a typical numerical equation and the existing EFG-BC/320 electric heavy-duty forklift from the Quzhou Special Equipment Inspection Center. Simulation results show that the proposed method is significantly superior to the traditional MFAC and PID control methods in tracking accuracy and robustness when dealing with nonlinear disturbance of the system. The DESO-MFASMC scheme proposed in this paper not only shows its advantages in theory but also verifies its effectiveness and practicability in engineering through practical application.","PeriodicalId":20597,"journal":{"name":"Processes","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Model-Free Adaptive Sliding Mode Control Scheme Based on DESO and Its Automation Application\",\"authors\":\"Xiaohua Wei, Zhen Sui, Hanzhou Peng, Feng Xu, Jianliang Xu, Yulong Wang\",\"doi\":\"10.3390/pr12091950\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses a class of uncertain nonlinear systems with disturbances that are challenging to model by proposing a novel model-free adaptive sliding mode control (MFASMC) scheme based on a discrete-time extended state observer (DESO). Initially, leveraging the pseudo partial derivative (PPD) concept in the model-free adaptive control (MFAC) framework, the discrete-time nonlinear model is converted into a full-form dynamic linearization (FFDL) model. Secondly, using the FFDL data model, a discrete sliding mode controller is designed. A discrete integral sliding mode surface is chosen to mitigate chattering during the reaching phase, and a hyperbolic tangent function with minimal slope variation is selected for smoother switching control. Furthermore, a DESO is designed to estimate uncertainties in the discrete system, enabling real-time compensation for the controller. Finally, a genetic optimization algorithm is employed for parameter tuning to minimize the time cost associated with selecting control parameters. The design process of this scheme relies solely on the data of the controlled system, without depending on a mathematical model. The proposed DESO-MFASMC scheme is tested through simulations using a typical numerical equation and the existing EFG-BC/320 electric heavy-duty forklift from the Quzhou Special Equipment Inspection Center. Simulation results show that the proposed method is significantly superior to the traditional MFAC and PID control methods in tracking accuracy and robustness when dealing with nonlinear disturbance of the system. The DESO-MFASMC scheme proposed in this paper not only shows its advantages in theory but also verifies its effectiveness and practicability in engineering through practical application.\",\"PeriodicalId\":20597,\"journal\":{\"name\":\"Processes\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Processes\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/pr12091950\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Processes","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/pr12091950","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Model-Free Adaptive Sliding Mode Control Scheme Based on DESO and Its Automation Application
This paper addresses a class of uncertain nonlinear systems with disturbances that are challenging to model by proposing a novel model-free adaptive sliding mode control (MFASMC) scheme based on a discrete-time extended state observer (DESO). Initially, leveraging the pseudo partial derivative (PPD) concept in the model-free adaptive control (MFAC) framework, the discrete-time nonlinear model is converted into a full-form dynamic linearization (FFDL) model. Secondly, using the FFDL data model, a discrete sliding mode controller is designed. A discrete integral sliding mode surface is chosen to mitigate chattering during the reaching phase, and a hyperbolic tangent function with minimal slope variation is selected for smoother switching control. Furthermore, a DESO is designed to estimate uncertainties in the discrete system, enabling real-time compensation for the controller. Finally, a genetic optimization algorithm is employed for parameter tuning to minimize the time cost associated with selecting control parameters. The design process of this scheme relies solely on the data of the controlled system, without depending on a mathematical model. The proposed DESO-MFASMC scheme is tested through simulations using a typical numerical equation and the existing EFG-BC/320 electric heavy-duty forklift from the Quzhou Special Equipment Inspection Center. Simulation results show that the proposed method is significantly superior to the traditional MFAC and PID control methods in tracking accuracy and robustness when dealing with nonlinear disturbance of the system. The DESO-MFASMC scheme proposed in this paper not only shows its advantages in theory but also verifies its effectiveness and practicability in engineering through practical application.
期刊介绍:
Processes (ISSN 2227-9717) provides an advanced forum for process related research in chemistry, biology and allied engineering fields. The journal publishes regular research papers, communications, letters, short notes and reviews. Our aim is to encourage researchers to publish their experimental, theoretical and computational results in as much detail as necessary. There is no restriction on paper length or number of figures and tables.