{"title":"PCLNPG 纳米聚合物添加剂对 PPSU 超滤膜表面和结构特性的影响以增强蛋白质排斥效果","authors":"Younus Rashid Taha, Adel Zrelli, Nejib Hajji, Raed A. Al-Juboori, Qusay Alsalhy","doi":"10.3390/pr12091930","DOIUrl":null,"url":null,"abstract":"This research explored the use of a partially cross-linked graft copolymer (PCLNPG) as an innovative nanopolymer pore-forming agent to enhance polyphenylsulfone (PPSU) membranes for protein separation applications. The study systematically examined the impact of incorporating PCLNPG at varying concentrations on the morphological and surface properties of PPSU membranes. A thorough characterization of the resulting PPSU-PCLNPG membranes was performed, focusing on changes in morphology, water affinity, porosity, pore size, and pore size distribution. The experimental findings demonstrated that the use of PCLNPG led to a significantly more porous structure, as confirmed by SEM analysis, with notable increases in porosity and pore size (nearly double). Additionally, the hydrophilicity of the PPSU membrane was remarkably enhanced. Performance evaluations revealed a substantial improvement in pure water flux, with the flux nearly tripling. The BSA retention was directly correlated with the concentration of the PCLNPG pore former for a loading range of 0.25–0.75 wt.%. The incorporation of PCLNPG also reduced the membrane fouling propensity by reducing both cake layer resistance (Rc) and pore plugging resistance (Rp). These results underscore the potential of PCLNPG-PPSU membranes for wastewater reclamation and nutrient recovery applications.","PeriodicalId":20597,"journal":{"name":"Processes","volume":"7 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of PCLNPG Nanopolymeric Additive on the Surface and Structural Properties of PPSU Ultrafiltration Membranes for Enhanced Protein Rejection\",\"authors\":\"Younus Rashid Taha, Adel Zrelli, Nejib Hajji, Raed A. Al-Juboori, Qusay Alsalhy\",\"doi\":\"10.3390/pr12091930\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research explored the use of a partially cross-linked graft copolymer (PCLNPG) as an innovative nanopolymer pore-forming agent to enhance polyphenylsulfone (PPSU) membranes for protein separation applications. The study systematically examined the impact of incorporating PCLNPG at varying concentrations on the morphological and surface properties of PPSU membranes. A thorough characterization of the resulting PPSU-PCLNPG membranes was performed, focusing on changes in morphology, water affinity, porosity, pore size, and pore size distribution. The experimental findings demonstrated that the use of PCLNPG led to a significantly more porous structure, as confirmed by SEM analysis, with notable increases in porosity and pore size (nearly double). Additionally, the hydrophilicity of the PPSU membrane was remarkably enhanced. Performance evaluations revealed a substantial improvement in pure water flux, with the flux nearly tripling. The BSA retention was directly correlated with the concentration of the PCLNPG pore former for a loading range of 0.25–0.75 wt.%. The incorporation of PCLNPG also reduced the membrane fouling propensity by reducing both cake layer resistance (Rc) and pore plugging resistance (Rp). These results underscore the potential of PCLNPG-PPSU membranes for wastewater reclamation and nutrient recovery applications.\",\"PeriodicalId\":20597,\"journal\":{\"name\":\"Processes\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Processes\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/pr12091930\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Processes","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/pr12091930","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Impact of PCLNPG Nanopolymeric Additive on the Surface and Structural Properties of PPSU Ultrafiltration Membranes for Enhanced Protein Rejection
This research explored the use of a partially cross-linked graft copolymer (PCLNPG) as an innovative nanopolymer pore-forming agent to enhance polyphenylsulfone (PPSU) membranes for protein separation applications. The study systematically examined the impact of incorporating PCLNPG at varying concentrations on the morphological and surface properties of PPSU membranes. A thorough characterization of the resulting PPSU-PCLNPG membranes was performed, focusing on changes in morphology, water affinity, porosity, pore size, and pore size distribution. The experimental findings demonstrated that the use of PCLNPG led to a significantly more porous structure, as confirmed by SEM analysis, with notable increases in porosity and pore size (nearly double). Additionally, the hydrophilicity of the PPSU membrane was remarkably enhanced. Performance evaluations revealed a substantial improvement in pure water flux, with the flux nearly tripling. The BSA retention was directly correlated with the concentration of the PCLNPG pore former for a loading range of 0.25–0.75 wt.%. The incorporation of PCLNPG also reduced the membrane fouling propensity by reducing both cake layer resistance (Rc) and pore plugging resistance (Rp). These results underscore the potential of PCLNPG-PPSU membranes for wastewater reclamation and nutrient recovery applications.
期刊介绍:
Processes (ISSN 2227-9717) provides an advanced forum for process related research in chemistry, biology and allied engineering fields. The journal publishes regular research papers, communications, letters, short notes and reviews. Our aim is to encourage researchers to publish their experimental, theoretical and computational results in as much detail as necessary. There is no restriction on paper length or number of figures and tables.