高喷煤层二氧化碳气体压裂二次喷出消除安全隧道技术研究

IF 2.8 4区 工程技术 Q2 ENGINEERING, CHEMICAL Processes Pub Date : 2024-09-07 DOI:10.3390/pr12091925
Zongwei Xu, Junsheng Zhang, Yunxing Cao, Zhenzhi Wang, Xinsheng Zhang
{"title":"高喷煤层二氧化碳气体压裂二次喷出消除安全隧道技术研究","authors":"Zongwei Xu, Junsheng Zhang, Yunxing Cao, Zhenzhi Wang, Xinsheng Zhang","doi":"10.3390/pr12091925","DOIUrl":null,"url":null,"abstract":"The No. 3 coal seam in the Yuxi Coal Mine has a measured maximum gas content of 25.59 m3/t, along with a maximum gas pressure of 2.9 MPa, indicating its high risk to gas and outbursts. To mitigate outburst risks of the coal seam, the 1301 working face has been implemented with gas pre-drainage measures by grid boreholes from underlying roadways. After one year of extraction, it was confirmed that the gas content at all 33 test sites was below 8 m3/t, meeting the outburst prevention standards. However, during subsequent coal tunnel excavation, the gas desorption index K1 value frequently exceeded the standard, resulting in numerous occurrences of abnormal gas emission or small-scale outbursts. To tackle the challenges associated with safe excavation following the first-round regional outburst prevention measures, a research and industrial trial of CO2 gas fracturing (CO2-Frac) technology for secondary outburst prevention and rapid excavation was completed. The results show that the dual-hole and high-pressure (185 MPa) CO2-Frac considerably contributes to outburst prevention. K1 exceedances per hundred meters of tunnel excavations were from an average of 2.54 without CO2-Frac to an average of 0.28 after the new technology was implemented, leading to an eight-fold reduction. Additionally, the monthly excavation footage increased from an average of 81.64 m without CO2-Frac to an average of 162.42 m with CO2-Frac, resulting in a two-fold improvement. The dual-hole and high-pressure CO2-Frac is an advanced technology for safe and efficient excavation for secondary outburst elimination in highly outburst-prone coal seams in the Yuxi Coal Mine, with potential for widespread application in similar coal seam conditions.","PeriodicalId":20597,"journal":{"name":"Processes","volume":"8 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on Safety Tunneling Technology of Secondary Outburst Elimination by CO2 Gas Fracturing in High-Outburst Coal Seam\",\"authors\":\"Zongwei Xu, Junsheng Zhang, Yunxing Cao, Zhenzhi Wang, Xinsheng Zhang\",\"doi\":\"10.3390/pr12091925\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The No. 3 coal seam in the Yuxi Coal Mine has a measured maximum gas content of 25.59 m3/t, along with a maximum gas pressure of 2.9 MPa, indicating its high risk to gas and outbursts. To mitigate outburst risks of the coal seam, the 1301 working face has been implemented with gas pre-drainage measures by grid boreholes from underlying roadways. After one year of extraction, it was confirmed that the gas content at all 33 test sites was below 8 m3/t, meeting the outburst prevention standards. However, during subsequent coal tunnel excavation, the gas desorption index K1 value frequently exceeded the standard, resulting in numerous occurrences of abnormal gas emission or small-scale outbursts. To tackle the challenges associated with safe excavation following the first-round regional outburst prevention measures, a research and industrial trial of CO2 gas fracturing (CO2-Frac) technology for secondary outburst prevention and rapid excavation was completed. The results show that the dual-hole and high-pressure (185 MPa) CO2-Frac considerably contributes to outburst prevention. K1 exceedances per hundred meters of tunnel excavations were from an average of 2.54 without CO2-Frac to an average of 0.28 after the new technology was implemented, leading to an eight-fold reduction. Additionally, the monthly excavation footage increased from an average of 81.64 m without CO2-Frac to an average of 162.42 m with CO2-Frac, resulting in a two-fold improvement. The dual-hole and high-pressure CO2-Frac is an advanced technology for safe and efficient excavation for secondary outburst elimination in highly outburst-prone coal seams in the Yuxi Coal Mine, with potential for widespread application in similar coal seam conditions.\",\"PeriodicalId\":20597,\"journal\":{\"name\":\"Processes\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Processes\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/pr12091925\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Processes","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/pr12091925","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

玉溪煤矿3号煤层实测最大瓦斯含量为25.59立方米/吨,最大瓦斯压力为2.9兆帕,瓦斯突出风险较高。为降低该煤层的突水风险,1301 工作面采取了瓦斯预抽措施,从底层巷道打出网格钻孔。经过一年的开采,确认所有 33 个试验点的瓦斯含量均低于 8 立方米/吨,达到了防突标准。然而,在随后的煤巷掘进过程中,瓦斯解吸指数 K1 值经常超标,导致瓦斯异常排放或小规模掘进事故屡屡发生。针对第一轮区域防突措施后的安全掘进难题,完成了二氧化碳气体压裂(CO2-Frac)二次防突和快速掘进技术的研究和工业试验。结果表明,双孔高压(185 兆帕)CO2-Frac 对预防溃坝有很大帮助。采用新技术后,每百米隧道挖掘的 K1 超标率从没有 CO2-Frac 时的平均 2.54 降至平均 0.28,降低了 8 倍。此外,每月的挖掘进尺从没有 CO2-Frac 时的平均 81.64 米增加到使用 CO2-Frac 后的平均 162.42 米,提高了两倍。双孔高压 CO2-Frac 是在玉溪煤矿高突煤层进行安全高效掘进以消除二次突水的先进技术,有望在类似煤层条件下广泛应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Study on Safety Tunneling Technology of Secondary Outburst Elimination by CO2 Gas Fracturing in High-Outburst Coal Seam
The No. 3 coal seam in the Yuxi Coal Mine has a measured maximum gas content of 25.59 m3/t, along with a maximum gas pressure of 2.9 MPa, indicating its high risk to gas and outbursts. To mitigate outburst risks of the coal seam, the 1301 working face has been implemented with gas pre-drainage measures by grid boreholes from underlying roadways. After one year of extraction, it was confirmed that the gas content at all 33 test sites was below 8 m3/t, meeting the outburst prevention standards. However, during subsequent coal tunnel excavation, the gas desorption index K1 value frequently exceeded the standard, resulting in numerous occurrences of abnormal gas emission or small-scale outbursts. To tackle the challenges associated with safe excavation following the first-round regional outburst prevention measures, a research and industrial trial of CO2 gas fracturing (CO2-Frac) technology for secondary outburst prevention and rapid excavation was completed. The results show that the dual-hole and high-pressure (185 MPa) CO2-Frac considerably contributes to outburst prevention. K1 exceedances per hundred meters of tunnel excavations were from an average of 2.54 without CO2-Frac to an average of 0.28 after the new technology was implemented, leading to an eight-fold reduction. Additionally, the monthly excavation footage increased from an average of 81.64 m without CO2-Frac to an average of 162.42 m with CO2-Frac, resulting in a two-fold improvement. The dual-hole and high-pressure CO2-Frac is an advanced technology for safe and efficient excavation for secondary outburst elimination in highly outburst-prone coal seams in the Yuxi Coal Mine, with potential for widespread application in similar coal seam conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Processes
Processes Chemical Engineering-Bioengineering
CiteScore
5.10
自引率
11.40%
发文量
2239
审稿时长
14.11 days
期刊介绍: Processes (ISSN 2227-9717) provides an advanced forum for process related research in chemistry, biology and allied engineering fields. The journal publishes regular research papers, communications, letters, short notes and reviews. Our aim is to encourage researchers to publish their experimental, theoretical and computational results in as much detail as necessary. There is no restriction on paper length or number of figures and tables.
期刊最新文献
Box-Behnken Design for DPPH Free Radical Scavenging Activity Optimization from Microwave-Assisted Extraction of Polyphenolic Compounds from Agave lechuguilla Torr. Residues Particle Properties and Flotation Characteristics of Difficult-to-Float Lean Coal Damage Evaluation of Unconsolidated Sandstone Particle Migration Reservoir Based on Well–Seismic Combination Studying the Characteristics of Tank Oil Sludge Thermal Stability Improvement of Cu-Based Catalyst by Hydrophobic Modification in Methanol Synthesis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1