使用 CoLaNET 尖峰神经网络进行图像分类 - MNIST 示例

Mikhail Kiselev
{"title":"使用 CoLaNET 尖峰神经网络进行图像分类 - MNIST 示例","authors":"Mikhail Kiselev","doi":"arxiv-2409.07833","DOIUrl":null,"url":null,"abstract":"In the present paper, it is shown how the columnar/layered CoLaNET spiking\nneural network (SNN) architecture can be used in supervised learning image\nclassification tasks. Image pixel brightness is coded by the spike count during\nimage presentation period. Image class label is indicated by activity of\nspecial SNN input nodes (one node per class). The CoLaNET classification\naccuracy is evaluated on the MNIST benchmark. It is demonstrated that CoLaNET\nis almost as accurate as the most advanced machine learning algorithms (not\nusing convolutional approach).","PeriodicalId":501347,"journal":{"name":"arXiv - CS - Neural and Evolutionary Computing","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classifying Images with CoLaNET Spiking Neural Network -- the MNIST Example\",\"authors\":\"Mikhail Kiselev\",\"doi\":\"arxiv-2409.07833\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present paper, it is shown how the columnar/layered CoLaNET spiking\\nneural network (SNN) architecture can be used in supervised learning image\\nclassification tasks. Image pixel brightness is coded by the spike count during\\nimage presentation period. Image class label is indicated by activity of\\nspecial SNN input nodes (one node per class). The CoLaNET classification\\naccuracy is evaluated on the MNIST benchmark. It is demonstrated that CoLaNET\\nis almost as accurate as the most advanced machine learning algorithms (not\\nusing convolutional approach).\",\"PeriodicalId\":501347,\"journal\":{\"name\":\"arXiv - CS - Neural and Evolutionary Computing\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Neural and Evolutionary Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07833\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Neural and Evolutionary Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07833","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文展示了柱状/层状 CoLaNET 尖峰神经网络(SNN)架构如何用于监督学习图像分类任务。图像像素亮度由图像呈现期间的尖峰计数编码。图像类别标签由特殊 SNN 输入节点(每个类别一个节点)的活动指示。CoLaNET 的分类准确率在 MNIST 基准上进行了评估。结果表明,CoLaNET 的准确度几乎与最先进的机器学习算法(不使用卷积方法)相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Classifying Images with CoLaNET Spiking Neural Network -- the MNIST Example
In the present paper, it is shown how the columnar/layered CoLaNET spiking neural network (SNN) architecture can be used in supervised learning image classification tasks. Image pixel brightness is coded by the spike count during image presentation period. Image class label is indicated by activity of special SNN input nodes (one node per class). The CoLaNET classification accuracy is evaluated on the MNIST benchmark. It is demonstrated that CoLaNET is almost as accurate as the most advanced machine learning algorithms (not using convolutional approach).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hardware-Friendly Implementation of Physical Reservoir Computing with CMOS-based Time-domain Analog Spiking Neurons Self-Contrastive Forward-Forward Algorithm Bio-Inspired Mamba: Temporal Locality and Bioplausible Learning in Selective State Space Models PReLU: Yet Another Single-Layer Solution to the XOR Problem Inferno: An Extensible Framework for Spiking Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1