ANN 与 KAN 在脑电图阿尔茨海默病数据分类方面的综合比较

Akshay Sunkara, Sriram Sattiraju, Aakarshan Kumar, Zaryab Kanjiani, Himesh Anumala
{"title":"ANN 与 KAN 在脑电图阿尔茨海默病数据分类方面的综合比较","authors":"Akshay Sunkara, Sriram Sattiraju, Aakarshan Kumar, Zaryab Kanjiani, Himesh Anumala","doi":"arxiv-2409.05989","DOIUrl":null,"url":null,"abstract":"Alzheimer's Disease is an incurable cognitive condition that affects\nthousands of people globally. While some diagnostic methods exist for\nAlzheimer's Disease, many of these methods cannot detect Alzheimer's in its\nearlier stages. Recently, researchers have explored the use of\nElectroencephalogram (EEG) technology for diagnosing Alzheimer's. EEG is a\nnoninvasive method of recording the brain's electrical signals, and EEG data\nhas shown distinct differences between patients with and without Alzheimer's.\nIn the past, Artificial Neural Networks (ANNs) have been used to predict\nAlzheimer's from EEG data, but these models sometimes produce false positive\ndiagnoses. This study aims to compare losses between ANNs and Kolmogorov-Arnold\nNetworks (KANs) across multiple types of epochs, learning rates, and nodes. The\nresults show that across these different parameters, ANNs are more accurate in\npredicting Alzheimer's Disease from EEG signals.","PeriodicalId":501347,"journal":{"name":"arXiv - CS - Neural and Evolutionary Computing","volume":"160 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Comprehensive Comparison Between ANNs and KANs For Classifying EEG Alzheimer's Data\",\"authors\":\"Akshay Sunkara, Sriram Sattiraju, Aakarshan Kumar, Zaryab Kanjiani, Himesh Anumala\",\"doi\":\"arxiv-2409.05989\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Alzheimer's Disease is an incurable cognitive condition that affects\\nthousands of people globally. While some diagnostic methods exist for\\nAlzheimer's Disease, many of these methods cannot detect Alzheimer's in its\\nearlier stages. Recently, researchers have explored the use of\\nElectroencephalogram (EEG) technology for diagnosing Alzheimer's. EEG is a\\nnoninvasive method of recording the brain's electrical signals, and EEG data\\nhas shown distinct differences between patients with and without Alzheimer's.\\nIn the past, Artificial Neural Networks (ANNs) have been used to predict\\nAlzheimer's from EEG data, but these models sometimes produce false positive\\ndiagnoses. This study aims to compare losses between ANNs and Kolmogorov-Arnold\\nNetworks (KANs) across multiple types of epochs, learning rates, and nodes. The\\nresults show that across these different parameters, ANNs are more accurate in\\npredicting Alzheimer's Disease from EEG signals.\",\"PeriodicalId\":501347,\"journal\":{\"name\":\"arXiv - CS - Neural and Evolutionary Computing\",\"volume\":\"160 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Neural and Evolutionary Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.05989\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Neural and Evolutionary Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05989","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

阿尔茨海默病是一种无法治愈的认知疾病,影响着全球成千上万的人。虽然目前已有一些诊断阿尔茨海默病的方法,但其中许多方法无法检测到早期阶段的阿尔茨海默病。最近,研究人员探索使用脑电图(EEG)技术诊断阿尔茨海默病。脑电图是一种记录大脑电信号的非侵入性方法,脑电图数据显示阿尔茨海默病患者和非阿尔茨海默病患者之间存在明显差异。过去,人工神经网络(ANN)曾被用于从脑电图数据中预测阿尔茨海默病,但这些模型有时会产生误诊。本研究旨在比较人工神经网络和柯尔莫哥洛夫-阿诺德网络(KAN)在不同类型的历时、学习率和节点上的损失。结果表明,在这些不同的参数中,ANN 在从脑电图信号预测阿尔茨海默病方面更为准确。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Comprehensive Comparison Between ANNs and KANs For Classifying EEG Alzheimer's Data
Alzheimer's Disease is an incurable cognitive condition that affects thousands of people globally. While some diagnostic methods exist for Alzheimer's Disease, many of these methods cannot detect Alzheimer's in its earlier stages. Recently, researchers have explored the use of Electroencephalogram (EEG) technology for diagnosing Alzheimer's. EEG is a noninvasive method of recording the brain's electrical signals, and EEG data has shown distinct differences between patients with and without Alzheimer's. In the past, Artificial Neural Networks (ANNs) have been used to predict Alzheimer's from EEG data, but these models sometimes produce false positive diagnoses. This study aims to compare losses between ANNs and Kolmogorov-Arnold Networks (KANs) across multiple types of epochs, learning rates, and nodes. The results show that across these different parameters, ANNs are more accurate in predicting Alzheimer's Disease from EEG signals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hardware-Friendly Implementation of Physical Reservoir Computing with CMOS-based Time-domain Analog Spiking Neurons Self-Contrastive Forward-Forward Algorithm Bio-Inspired Mamba: Temporal Locality and Bioplausible Learning in Selective State Space Models PReLU: Yet Another Single-Layer Solution to the XOR Problem Inferno: An Extensible Framework for Spiking Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1